ファイ、マシューズ、ピアソンの相関係数の関係
ファイとマシューズの相関係数は同じ概念ですか?2つのバイナリ変数のピアソン相関係数とどのように関連または同等ですか?バイナリ値は0と1であると仮定します。 2つのベルヌーイ確率変数xxxと間のピアソンの相関yyyは次のとおりです。 ρ=E[(x−E[x])(y−E[y])]Var[x]Var[y]−−−−−−−−−−√=E[xy]−E[x]E[y]Var[x]Var[y]−−−−−−−−−−√=n11n−n1∙n∙1n0∙n1∙n∙0n∙1−−−−−−−−−−√ρ=E[(x−E[x])(y−E[y])]Var[x]Var[y]=E[xy]−E[x]E[y]Var[x]Var[y]=n11n−n1∙n∙1n0∙n1∙n∙0n∙1 \rho = \frac{\mathbb{E} [(x - \mathbb{E}[x])(y - \mathbb{E}[y])]} {\sqrt{\text{Var}[x] \, \text{Var}[y]}} = \frac{\mathbb{E} [xy] - \mathbb{E}[x] \, \mathbb{E}[y]}{\sqrt{\text{Var}[x] \, \text{Var}[y]}} = \frac{n_{1 1} n - n_{1\bullet} n_{\bullet 1}}{\sqrt{n_{0\bullet}n_{1\bullet} n_{\bullet 0}n_{\bullet 1}}} どこ E[x]=n1∙nVar[x]=n0∙n1∙n2E[y]=n∙1nVar[y]=n∙0n∙1n2E[xy]=n11nE[x]=n1∙nVar[x]=n0∙n1∙n2E[y]=n∙1nVar[y]=n∙0n∙1n2E[xy]=n11n \mathbb{E}[x] = \frac{n_{1\bullet}}{n} \quad \text{Var}[x] = \frac{n_{0\bullet}n_{1\bullet}}{n^2} \quad \mathbb{E}[y] = \frac{n_{\bullet 1}}{n} \quad \text{Var}[y] …