10
平均対ギャンブラーの誤acyへの回帰
一方で、平均への回帰があり、他方でギャンブラーの誤acyがあります。 ギャンブラーの誤acyは、Miller and Sanjurjo(2019)によって定義されています。「ランダムシーケンスは反転の系統的傾向がある、つまり、同様の結果のストリークは継続するよりも終了する可能性が高いという誤った信念」。連続した時間は、次の試験で不釣り合いに尾を引く可能性が高いと考えられます。 私は前回のゲームで良好なパフォーマンスを達成しましたが、平均への回帰によると、おそらく次のゲームではパフォーマンスが低下するでしょう。 しかし、ギャンブラーの誤acyによると、次の2つの確率を考慮します。 20頭の確率、1尾= 0.520×0.5=0.5210.520×0.5=0.5210.5^{20} × 0.5 = 0.5^{21} 20頭の確率、その後1頭= 0.520×0.5=0.5210.520×0.5=0.5210.5^{20} × 0.5 = 0.5^{21} その後... 簡単な例を考えてみましょう。生徒のクラスは、科目で100項目の正誤テストを行います。すべての生徒がすべての質問をランダムに選択するとします。次に、各学生のスコアは、平均50の期待値を持つ、独立した同じ分布のランダム変数のセットの1つを実現します。 当然のことながら、一部の学生は50を大幅に上回り、一部の学生は偶然50を大幅に下回ります。学生の上位10%のみを取得し、2番目のテストを行って、すべてのアイテムで再びランダムに選択すると、平均スコアは再び50に近くなると予想されます。 したがって、これらの学生の平均は、元のテストを受けたすべての学生の平均にまで「回帰」します。学生が元のテストで得点したものに関係なく、2番目のテストで得点の最高の予測は50です。 特別に10%の学生のトップスコアのみを取得し、すべてのアイテムで再びランダムに選択する2回目のテストを行うと、平均スコアは再び50に近くなります。 ギャンブラーの誤acyによると、得点の確率は同じで、必ずしも50に近いとは限らないと思われますか? Miller、JB、およびSanjurjo、A.(2019)。サンプルサイズを無視した場合の経験によるギャンブラーの誤Fallの確認方法