Lassoで特定された変数のサブセットでOLS推定よりもLasso推定を使用する理由
なげなわ回帰、最適なソリューション(最小テストエラーなど)でk個の特徴が選択され、その結果、帽子{\ベータ} \ \帽子{\ベータ} ^ {投げ縄} = \左(\ハット{\ベータ} _1 ^ {投げ縄} \帽子{\ベータ} _2 ^ {投げ縄}、... _k ^ {lasso}、0、... 0 \ right)。L(β)=(Xβ−y)′(Xβ−y)+λ∥β∥1,L(β)=(Xβ−y)′(Xβ−y)+λ‖β‖1,L(\beta)=(X\beta-y)'(X\beta-y)+\lambda\|\beta\|_1,kkkβ^lasso=(β^lasso1,β^lasso2,...,β^lassok,0,...0)β^lasso=(β^1lasso,β^2lasso,...,β^klasso,0,...0)\hat{\beta}^{lasso}=\left(\hat{\beta}_1^{lasso},\hat{\beta}_2^{lasso},...,\hat{\beta}_k^{lasso},0,...0\right) 我々はそれを知っている(β^lasso1,β^lasso2,...,β^lassok)(β^1lasso,β^2lasso,...,β^klasso)\left(\hat{\beta}_1^{lasso},\hat{\beta}_2^{lasso},...,\hat{\beta}_k^{lasso}\right)です\ left(\ beta_1、\ beta_2、...、\ beta_k \ right)の偏った推定値な(β1,β2,...,βk)(β1,β2,...,βk)\left(\beta_1,\beta_2,...,\beta_k\right)ので、なぜ「合理的」ではなくβ^lassoβ^lasso\hat{\beta}^{lasso}を最終解として採用するのですか?β^new=(β^new1:k,0,...,0)β^new=(β^1:knew,0,...,0)\hat{\beta}^{new}=\left(\hat{\beta}_{1:k}^{new},0,...,0\right)、ここでβ^new1:kβ^1:knew\hat{\beta}_{1:k}^{new}は、部分モデルLnew(β1:k)=(X1:kβ−y)′(X1:kβ−y)Lnew(β1:k)=(X1:kβ−y)′(X1:kβ−y)L^{new}(\beta_{1:k})=(X_{1:k}\beta-y)'(X_{1:k}\beta-y)。(X1:kX1:kX_{1:k}は、選択されたk個のフィーチャに対応するXの列を示します)。XXXkkk 手短に言えば、変数選択だけでなく、選択した特徴の推定をOLSに任せるのではなく、特徴選択とパラメーター推定の両方にLassoを使用するのはなぜですか? (また、「Lassoは最大でnnn機能を選択できる」とはどういう意味ですか?nnnはサンプルサイズです。)