1
経験的ベイズはどのように有効ですか?
だから私はちょうど素晴らしい本入門の経験的ベイズを読み終えました。この本は素晴らしいと思いましたが、データからの事前作成は間違っていると感じました。分析計画を立て、データを収集し、分析計画で以前に決定した仮説をテストするように訓練されました。すでに収集したデータを分析すると、選択後の推論が行われ、「重要」と呼ばれるものをより厳しくする必要があります。こちらを参照してください。機械学習には、テストとトレーニングセットを設定する前に予測子を選択することを意味する「チェリーピッキング」と呼ばれる類似したものがあると思います(統計学習の概要)。 私が以前に学んだことを考えると、経験的なベイズは弱い基盤に基づいているように思えます。データが受動的に生成された設定でのみ使用されますか?もしそうなら、これは正当かもしれませんが、厳密な実験計画を行うときにそれを使用するのは正しくないようですが、ブラッド・エフロンは一般に非常にNHST分野である生物統計学のために経験的ベイズを使用することを知っています。 私の質問は: 経験的ベイズはどのように有効ですか? どのような状況で使用されますか? どのような状況で経験的ベイズアプローチの使用を避ける必要がありますか?その理由は? 人々は生物統計学以外の分野でそれを使用していますか?もしそうなら、どのような状況でそれを使用していますか?