RのROC曲線を使用して最適なカットオフポイントとその信頼区間を決定する方法は?
正常細胞と腫瘍細胞を区別するために使用できるテストのデータがあります。ROC曲線によると、この目的には適しています(曲線下面積は0.9): 私の質問は: このテストのカットオフポイントと、読み取り値があいまいであると判断される信頼区間を決定する方法 これを視覚化する最良の方法は何ですか(を使用ggplot2)? グラフはROCRとggplot2パッケージを使用してレンダリングされます: #install.packages("ggplot2","ROCR","verification") #if not installed yet library("ggplot2") library("ROCR") library("verification") d <-read.csv2("data.csv", sep=";") pred <- with(d,prediction(x,test)) perf <- performance(pred,"tpr", "fpr") auc <-performance(pred, measure = "auc")@y.values[[1]] rd <- data.frame(x=perf@x.values[[1]],y=perf@y.values[[1]]) p <- ggplot(rd,aes(x=x,y=y)) + geom_path(size=1) p <- p + geom_segment(aes(x=0,y=0,xend=1,yend=1),colour="black",linetype= 2) p <- p + geom_text(aes(x=1, y= 0, hjust=1, …