多変量分布の分位数を計算する方法に興味があります。図では、特定の単変量正規分布の5%および95%の分位点を描画しました(左)。適切な多変量正規分布の場合、アナログは密度関数の基底を囲む等値線になると想像しています。以下は、パッケージを使用してこれを計算する試みの例ですが、mvtnorm
成功しません。多変量密度関数の結果の等高線を計算することでこれを行うことができると思いますが、別の選択肢(たとえばの類似体qnorm
)があるかどうか疑問に思っていました。ご協力いただきありがとうございます。
例:
mu <- 5
sigma <- 2
vals <- seq(-2,12,,100)
ds <- dnorm(vals, mean=mu, sd=sigma)
plot(vals, ds, t="l")
qs <- qnorm(c(0.05, 0.95), mean=mu, sd=sigma)
abline(v=qs, col=2, lty=2)
#install.packages("mvtnorm")
require(mvtnorm)
n <- 2
mmu <- rep(mu, n)
msigma <- rep(sigma, n)
mcov <- diag(msigma^2)
mvals <- expand.grid(seq(-2,12,,100), seq(-2,12,,100))
mvds <- dmvnorm(x=mvals, mean=mmu, sigma=mcov)
persp(matrix(mvds,100,100), axes=FALSE)
mvqs <- qmvnorm(0.95, mean=mmu, sigma=mcov, tail = "both") #?
#ex. plot
png("tmp.png", width=8, height=4, units="in", res=400)
par(mfcol=c(1,2))
#univariate
plot(vals, ds, t="l")
qs <- qnorm(c(0.05, 0.95), mean=mu, sd=sigma)
abline(v=qs, col=2, lty=2)
#multivariate
pmat <- persp(seq(-2,12,,100), seq(-2,12,,100), matrix(mvds,100,100), axes=FALSE, shade=TRUE, lty=0)
cont <- contourLines(seq(-2,12,,100), seq(-2,12,,100), matrix(mvds,100,100), levels=0.05^2)
lines(trans3d(cont[[1]]$x, cont[[1]]$y, cont[[1]]$level, pmat), col=2, lty=2)
dev.off()