McNemarのテストと条件付きロジスティック回帰の関係


14

ペアの観測値のバイナリ応答データのモデリングに興味があります。グループでの事前事後介入の有効性について推論し、潜在的にいくつかの共変量を調整し、介入の一部として特に異なるトレーニングを受けたグループによる効果の変更があるかどうかを判断することを目指します。

次の形式のデータを指定します。

id phase resp
1  pre   1
1  post  0
2  pre   0
2  post  0
3  pre   1
3  post  0

そして、ペア応答情報の分割表:2×2

プレ正しい間違っている役職正しいab間違っているcd

我々は仮説のテストに興味を持っている:H0θc=1

マクネマーの検定の結果:H0(漸近的に)。ヌルの下では、不一致のペア(と)の等しい割合がプラスの効果()またはマイナスの効果()を好むと予想されるため、これは直感的です。正のケース定義の確率がおよび定義されてい。正の不一致ペアを観察する確率はです。Q=bc2b+cχ12H0bcbcp=bb+cn=b+cp1p=bc

一方、条件付きロジスティック回帰では、条件付き尤度を最大化することにより、異なるアプローチを使用して同じ仮説をテストします。

Lバツ;β=j=1nexpβバツj2expβバツj1+expβバツj2

ここで、。expβ=θc

それでは、これらのテストの関係は何ですか?前に示した分割表の簡単なテストをどのように行うことができますか?clogitからのp値のキャリブレーションとnullの下でのMcNemarのアプローチを見ると、それらは完全に無関係であると思います!

library(survival)
n <- 100
do.one <- function(n) {
  id <- rep(1:n, each=2)
  ph <- rep(0:1, times=n)
  rs <- rbinom(n*2, 1, 0.5)
  c(
    'pclogit' = coef(summary(clogit(rs ~ ph + strata(id))))[5],
    'pmctest' = mcnemar.test(table(ph,rs))$p.value
  )
}

out <- replicate(1000, do.one(n))
plot(t(out), main='Calibration plot of pvalues for McNemar and Clogit tests', 
  xlab='p-value McNemar', ylab='p-value conditional logistic regression')

ここに画像の説明を入力してください


pb=pcad/bc=1

McNemarのテストをオッズ比のテストとしてパラメーター化できることを思い出すようです。そのため、そのテストの尤度(条件付き尤度?)をどのように書き出すのでしょうか。
AdamO

マクネマーのテストの正確なバージョンを意味するのかどうかはわかりません。Breslow and Day(1980)、p。164-166およびパッケージ exact2x2は参照の場合があります。
ランデル

回答:


4

申し訳ありませんが、それは古い問題です。偶然これに出会いました。

mcnemarテストのコードに誤りがあります。で試してください:

n <- 100
do.one <- function(n) {
  id <- rep(1:n, each=2)
  case <- rep(0:1, times=n)
  rs <- rbinom(n*2, 1, 0.5)
  c(
    'pclogit' = coef(summary(clogit(case ~ rs + strata(id))))[5],
    'pmctest' = mcnemar.test(table(rs[case == 0], rs[case == 1]))$p.value
  )
}

out <- replicate(1000, do.one(n))

ここに画像の説明を入力してください


うわー!ありがとう、コミュニティへようこそ。明確にするために、McNemarは一致しないペア(?)で動作します。mcnemarの結果の計算にidがどのように関与しているかわかりません。おそらくこれらの相関関係を生成することは、clogitが何をしているかを解明するのに役立つでしょう。
AdamO 14

2

2つの競合する統計モデルがあります。モデル#1(帰無仮説、McNemar):正解から不正解への確率=不正確から正解への確率= 0.5または同等のb = c。モデル#2:正しい確率から正しくない確率<正しくない確率または同等の確率b> c。モデル#2については、最尤法とロジスティック回帰を使用して、モデル2を表すモデルパラメーターを決定します。各メソッドは異なるモデルを反映しているため、統計メソッドは異なって見えます。


clogitは両側検定ではないと言っているのですか?
AdamO
弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.