Normalの合計とNormalのキューブの合計の比率


12

次の極限分布(としてn)を見つけるのを手伝ってください: XがIをIIDれるN01

Un=X1+X2++XnX13+X23+Xn3,
XiN(0,1)

1
ランダム変数の変換を見てみましたか?たとえば、特徴的な機能、ラプラススティールチェス変換などを試すことができます。
スティン

1
ヒント:分子と分母は漸近的に二変量の正規です。モーメントを直接計算できます。平均は明らかにゼロ、分子の分散は、分母の分散は15 n、共分散は3 nです。(したがって、相関は3 / n15n3n。)通常、任意のゼロ平均二変量を発現し、極限分布を見つけるにはUVの形でAβA+Bの独立したゼロ平均法線のためのABと定数β、その注意比率V/U=β+B/Aは、シフトされたスケーリングされたコーシー分布です。3/150.775(U,V)(A,βA+B)ABβV/U=β+B/A
whuber

回答:


2

公式がどこXIN01YINは01独立している、それだけで古典的な教科書の練習になります。Fn d Fという事実を使用します

Un=X1+X2++XnY13+Y23+Yn3
XiN(0,1)YiN(0,1)
FndF,GndGFnGndFG
and we can conclude that U asymptotes to scaled Cauchy distribution.

But in your formulation, we can't apply the theorem due to dependence. My Monte-Carlo suggests that the limit distribution of Un is non-degenerate and it has no first moment and is not symmetric. I'd be interested in whether there is a explicit solution to this problem. I feel like the solution can only be written in terms of Wiener process.

[EDIT] Following whuber's hint, note that

(1nXi,1nXi3)d(Z1,Z2)
(Z1,Z2)N(0,(13315))
E[X14]=3E[X16]=15(n1)!!n
UndZ1Z2
Z1=15Z2+25Z3 where Z3N(0,1) and independent of Z2, we conclude that
Und15+25Z3Z215+275Γ
where ΓCauchy

0

Some comments, not a full solution. This is to long for a comment, but really only a comment. Some properties of the solution. Since the Xi are iid standard normal, which is a symmetric (about zero) distribution, Xi3 will also have symmetric distributions, and sums of (independent) symmetric rv's will be symmetric. So this is a ratio with the numerator and denominator both symmetric, so will be symmetric. The denominator will have a continuous density which is positive at zero, so we will expect the ratio to lack expectation (It is a general result that if Z is a random variable with continuous density positive at zero, then the 1/X will lack expectation. See I've heard that ratios or inverses of random variables often are problematic, in not having expectations. Why is that?). But here, there is dependence between numerator and denominator which complicates the matter ... (Clearly needs more thought here).

The interesting paper https://projecteuclid.org/download/pdf_1/euclid.aop/1176991795 shows that xi3 above, the cube of standard normal variables, has an indeterminate distribution "in the hamburger sense", that is, it is not determined by its moments! So the comment above about using transforms, might indicate a difficult way to proceed!

弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.