私の投稿の下のコメントで、Glen_bと私は、離散分布が必然的に平均と分散に依存している方法について議論していました。
正規分布では理にかなっています。私はあなたを伝える場合、あなたはどのような手掛かりいないである、と私はあなたの言うならば、あなたはどのような手掛かりいないです。(母集団パラメーターではなく、サンプル統計を扱うように編集されています。)
しかし、離散的な均一分布の場合、同じロジックが適用されませんか?エンドポイントの中心を推定するとスケールがわかりません。スケールを推定すると中心がわかりません。
私の考えで何が問題になっていますか?
編集
jbowmanのシミュレーションを行いました。次に、確率分布変換(私はそう思う)を実行して、周辺分布(コピュラの分離)の影響を受けずに関係を調べます。
Data.mean <- Data.var <- rep(NA,20000)
for (i in 1:20000){
Data <- sample(seq(1,10,1),100,replace=T)
Data.mean[i] <- mean(Data)
Data.var[i] <- var(Data)
}
par(mfrow=c(2,1))
plot(Data.mean,Data.var,main="Observations")
plot(ecdf(Data.mean)(Data.mean),ecdf(Data.var)(Data.var),main="'Copula'")
RStudioに表示される小さな画像では、2番目のプロットは単位正方形全体が均一にカバーされているため、独立しています。ズームインすると、はっきりとした垂直の帯が現れます。これは離散性に関係していると私は考えるべきではないと思います。次に、連続一様分布で試してみました。
Data.mean <- Data.var <- rep(NA,20000)
for (i in 1:20000){
Data <- runif(100,0,10)
Data.mean[i] <- mean(Data)
Data.var[i] <- var(Data)
}
par(mfrow=c(2,1))
plot(Data.mean,Data.var)
plot(ecdf(Data.mean)(Data.mean),ecdf(Data.var)(Data.var))
これは、単位正方形全体に均一に点が分布しているように見えるので、とが独立していることに懐疑的です。