Halmos-サベージ定理が優勢統計モデルのことを言う(Ω 、A、P)
定理が真である理由を直感的に把握しようとしましたが、成功しませんでしたので、定理を理解する直感的な方法があるかどうかが私の質問です。
Halmos-サベージ定理が優勢統計モデルのことを言う(Ω 、A、P)
定理が真である理由を直感的に把握しようとしましたが、成功しませんでしたので、定理を理解する直感的な方法があるかどうかが私の質問です。
回答:
これがどれほど直感的かはわかりませんが、ハルモス・サベージの定理の声明の根底にある主な技術的結果は次のとおりです。
補題。 してみましょうμが
μ 可能σσ 上-finite対策(S 、A)(S,A) 。仮定しℵがℵ 上の措置の集まりである(S 、A)(S,A) など、すべてのためのことをν ∈ ℵν∈ℵ 、ν « μν≪μ 。次いで、非負数のシーケンスが存在する{ C I } ∞ iは= 1{ci}∞i=1 の要素と配列ℵをℵ 、{ ν I } ∞ iは= 1{νi}∞i=1 ようΣは∞ 私は= 1、C iの = 1∑∞i=1ci=1 とν « Σ ∞ I = 1 C I νを私ν≪∑∞i=1ciνi ごとに1つずつν ∈ ℵν∈ℵ 。
これは、シェルビッシュの統計理論(1995)の定理A.78から逐語的に取られています。その中で、彼はそれをリーマンの統計統計仮説の検定(1986)(第3版へのリンク)に帰し、その結果はHalmosとSavage自身に帰せられます(補題7を参照)。別の参考資料として、Shaoの数学統計(2003年第2版)があります。関連する結果は補題2.1と定理2.2です。
上記の補題は、σ
「統計アプリケーションでは、多くの場合、単一のσ
σ 有限メジャーに関して絶対に連続するメジャーのクラスがあります。単一の支配メジャーが元のクラスにあるか、またはクラス。次の定理はこの問題に対処します。」
未知のθ > 0に対して区間[ 0 、θ ]に均一に分布すると考えられる量Xの
家族Pは
まず、聞かせて(θ I )∞ 私は= 1が
To see this, fix θ>0
Now choose a subsequence {θik}∞k=1
Thus, in this example we were able to explicitly construct a countable convex combination of probability measures from our dominated family which still dominates the entire family. The Lemma above guarantees that this can be done for any dominated family (at least as long as the dominating measure is σ-finite).
So now on to the Halmos-Savage Theorem (for which I will use slightly different notation than in the question due to personal preference). Given the Halmos-Savage Theorem, the Fisher-Neyman factorization theorem is just one application of the Doob-Dynkin lemma and the chain rule for Radon-Nikodym derivatives away!
Halmos-Savage Theorem. Let (X,B,P) be a dominated statistical model (meaning that P is a set of probability measures on B and there is a σ-finite measure μ on B such that P≪μ for all P∈P). Let T:(X,B)→(T,C) be a measurable function, where (T,C) is a standard Borel space. Then the following are equivalent:
- T is sufficient for P (meaning that there is a probability kernel r:B×T→[0,1] such that r(B,T) is a version of P(B∣T) for all B∈B and P∈P).
- There exists a sequence {ci}∞i=1 of nonnegative numbers such that ∑∞i=1ci=1 and a sequence {Pi}∞i=1 of probability measures in P such that P≪P∗ for all P∈P, where P∗=∑∞i=1ciPi, and for each P∈P there exists a T-measurable version of dP/dP∗.
Proof. By the lemma above, we may immediately replace μ by P∗=∑∞i=1ciPi for some sequence {ci}∞i=1 of nonnegative numbers such that ∑∞i=1ci=1 and a sequence {Pi}∞i=1 of probability measures in P.
(1. implies 2.)
Suppose T is sufficient.
Then we must show that there are T-measurable versions of dP/dP∗ for all P∈P.
Let r be the probability kernel in the statement of the theorem.
For each A∈σ(T) and B∈B we have
P∗(A∩B)=∞∑i=1ciPi(A∩B)=∞∑i=1ci∫APi(B∣T)dPi=∞∑i=1ci∫Ar(B,T)dPi=∫Ar(B,T)dP∗.
For each P∈P, let fP denote a version of the Radon-Nikodym derivative dP/dP∗ on the measurable space (X,σ(T)) (so in particular fP is T-measurable).
Then for all B∈B and P∈P we have
P(B)=∫XP(B∣T)dP=∫Xr(B,T)dP=∫Xr(B,T)fPdP∗=∫XP∗(B∣T)fPdP∗=∫XEP∗[1BfP∣T]dP∗=∫BfPdP∗.
(2. implies 1.)
Suppose one can choose a T-measurable version fP of dP/dP∗ for each P∈P.
For each B∈B, let r(B,t) denote a particular version of P∗(B∣T=t) (e.g., r(B,t) is a function such that r(B,T) is a version of P∗(B∣T)).
Since (T,C) is a standard Borel space, we may choose r in a way that makes it a probability kernel (see, e.g., Theorem B.32 in Schervish's Theory of Statistics (1995)).
We will show that r(B,T) is a version of P(B∣T) for any P∈P and any B∈B.
Thus, let A∈σ(T) and B∈B be given.
Then for all P∈P we have
P(A∩B)=∫A1BfPdP∗=∫AEP∗[1BfP∣T]dP∗=∫AP∗(B∣T)fPdP∗=∫Ar(B,T)fPdP∗=∫Ar(B,T)dP.
Summary. The important technical result underlying the Halmos-Savage theorem as presented here is the fact that a dominated family of probability measures is actually dominated by a countable convex combination of probability measures from that family. Given that result, the rest of the Halmos-Savage theorem is mostly just manipulations with basic properties of Radon-Nikodym derivatives and conditional expectations.