最初にこれを減らして、一変量/二変量の切り捨てられた正規分布の特定の瞬間のみに依存するようにします。もちろん、
E[Z+]=[E[(Zi)+]]iCov(Z+)=[Cov((Zi)+,(Zj)+)]ij,
そして、正規分布の特定の次元の座標方向の変換を行っているので、 1d打ち切り法線の平均と分散、および2つの1d打ち切り法線の共分散について心配する必要があります。
からのいくつかの結果を使用します
Sローゼンバウム(1961)。切り捨てられた2変量正規分布のモーメント。JRSS B、vol 23 pp 405-408。(jstor)
Rosenbaumは、考慮し
およびイベントへの切り捨てを考慮する。
[X~Y~]∼N([00],[1ρρ1]),
V={X~≥aX,Y~≥aY}
具体的には、彼の(1)、(3)、(5)の3つの結果を使用します。まず、以下を定義します。
qx=ϕ(ax)qy=ϕ(ay)Qx=Φ(−ax)Qy=Φ(−ay)Rxy=Φ(ρax−ay1−ρ2−−−−−√)Ryx=Φ(ρay−ax1−ρ2−−−−−√)rxy=1−ρ2−−−−−√2π−−√ϕ(h2−2ρhk+k21−ρ2−−−−−−−−−−−−−√)
現在、Rosenbaumは次のことを示しています:
Pr(V)E[X~∣V]Pr(V)E[X~2∣V]Pr(V)E[X~Y~∣V]=qxRxy+ρqyRyx=Pr(V)+axqxRxy+ρ2ayqyRyx+ρrxy=ρPr(V)+ρaxqxRxy+ρayqyRyx+rxy.(1)(3)(5)
(1)と(3)の特別なケースで、つまり1dの切り捨ても考慮すると便利です:
ay=−∞
Pr(V)E[X~∣V]Pr(V)E[X~2∣V]=qx=Pr(V)=Qx.(*)(**)
ここで、
[XY]=[μxμy]+[σx00σy][X~Y~]∼N([μXμY],[σ2xρσxσyρσxσyσ2y])=N(μ,Σ).
我々が使用する
の値でありおよび、。
ax=−μxσxay=−μyσy,
X~Y~X=0Y=0
ここで、(*)を使用して、を取得し
と(*)と(**)の両方を使用すると
よう
E[X+]=Pr(X+>0)E[X∣X>0]+Pr(X+=0)0=Pr(X>0)(μx+σxE[X~∣X~≥ax])=Qxμx+qxσx,
E[X2+]=Pr(X+>0)E[X2∣X>0]+Pr(X+=0)0=Pr(X~≥ax)E[(μx+σxX~)2∣X~≥ax]=Pr(X~≥ax)E[μ2x+μxσxX~+σ2xX~2∣X~≥ax]=Qxμ2x+qxμxσx+Qxσ2x
Var[X+]=E[X2+]−E[X+]2=Qxμ2x+qxμxσx+Qxσ2x−Q2xμ2x−q2xσ2x−2qxQxμxσx=Qx(1−Qx)μ2x+(1−2Qx)qxμxσx+(Qx−q2x)σ2x.
を見つけるには、
Cov(X+,Y+)
E[X+Y+]=Pr(V)E[XY∣V]+Pr(¬V)0=Pr(V)E[(μx+σxX~)(μy+σyY~)∣V]=μxμyPr(V)+μyσxPr(V)E[X~∣V]+μxσyPr(V)E[Y~∣V]+σxσyPr(V)E[X~Y~∣V]=μxμyPr(V)+μyσx(qxRxy+ρqyRyx)+μxσy(ρqxRxy+qyRyx)+σxσy(ρPr(V)−ρμxqxRxy/σx−ρμyqyRyx/σy+rxy)=(μxμy+σxσyρ)Pr(V)+(μyσx+μxσyρ−ρμxσy)qxRxy+(μyσxρ+μxσy−ρμyσx)qyRyx+σxσyrxy=(μxμy+Σxy)Pr(V)+μyσxqxRxy+μxσyqyRyx+σxσyrxy,
次に、を
引くと、
E[X+]E[Y+]Cov(X+,Y+)=(μxμy+Σxy)Pr(V)+μyσxqxRxy+μxσyqyRyx+σxσyrxy−(Qxμx+qxσx)(Qyμy+qyσy).
以下は、モーメントを計算するためのPythonコードです。
import numpy as np
from scipy import stats
def relu_mvn_mean_cov(mu, Sigma):
mu = np.asarray(mu, dtype=float)
Sigma = np.asarray(Sigma, dtype=float)
d, = mu.shape
assert Sigma.shape == (d, d)
x = (slice(None), np.newaxis)
y = (np.newaxis, slice(None))
sigma2s = np.diagonal(Sigma)
sigmas = np.sqrt(sigma2s)
rhos = Sigma / sigmas[x] / sigmas[y]
prob = np.empty((d, d)) # prob[i, j] = Pr(X_i > 0, X_j > 0)
zero = np.zeros(d)
for i in range(d):
prob[i, i] = np.nan
for j in range(i + 1, d):
# Pr(X > 0) = Pr(-X < 0); X ~ N(mu, S) => -X ~ N(-mu, S)
s = [i, j]
prob[i, j] = prob[j, i] = stats.multivariate_normal.cdf(
zero[s], mean=-mu[s], cov=Sigma[np.ix_(s, s)])
mu_sigs = mu / sigmas
Q = stats.norm.cdf(mu_sigs)
q = stats.norm.pdf(mu_sigs)
mean = Q * mu + q * sigmas
# rho_cs is sqrt(1 - rhos**2); but don't calculate diagonal, because
# it'll just be zero and we're dividing by it (but not using result)
# use inf instead of nan; stats.norm.cdf doesn't like nan inputs
rho_cs = 1 - rhos**2
np.fill_diagonal(rho_cs, np.inf)
np.sqrt(rho_cs, out=rho_cs)
R = stats.norm.cdf((mu_sigs[y] - rhos * mu_sigs[x]) / rho_cs)
mu_sigs_sq = mu_sigs ** 2
r_num = mu_sigs_sq[x] + mu_sigs_sq[y] - 2 * rhos * mu_sigs[x] * mu_sigs[y]
np.fill_diagonal(r_num, 1) # don't want slightly negative numerator here
r = rho_cs / np.sqrt(2 * np.pi) * stats.norm.pdf(np.sqrt(r_num) / rho_cs)
bit = mu[y] * sigmas[x] * q[x] * R
cov = (
(mu[x] * mu[y] + Sigma) * prob
+ bit + bit.T
+ sigmas[x] * sigmas[y] * r
- mean[x] * mean[y])
cov[range(d), range(d)] = (
Q * (1 - Q) * mu**2 + (1 - 2 * Q) * q * mu * sigmas
+ (Q - q**2) * sigma2s)
return mean, cov
そしてそれが機能するモンテカルロテスト:
np.random.seed(12)
d = 4
mu = np.random.randn(d)
L = np.random.randn(d, d)
Sigma = L.T.dot(L)
dist = stats.multivariate_normal(mu, Sigma)
mn, cov = relu_mvn_mean_cov(mu, Sigma)
samps = dist.rvs(10**7)
mn_est = samps.mean(axis=0)
cov_est = np.cov(samps, rowvar=False)
print(np.max(np.abs(mn - mn_est)), np.max(np.abs(cov - cov_est)))
これはを与え0.000572145310512 0.00298692620286
、主張された期待値と共分散がモンテカルロ推定(サンプルに基づく)に一致することを示します。10,000,000