私の研究では、次の一般的な問題に遭遇しました。同じドメイン上に2つの分布とがあり、それらの分布からのサンプルが多数(ただし有限)あります。サンプル独立して同一これら二つの分布のいずれかから分配される(分布が関係してもよいが:例えば、の混合物であってもよい。およびいくつかの他のディストリビューション)帰無仮説は、試料から来ることである、代替仮説はことですサンプルはからのものです。
分布と知って、サンプルのテストでタイプIとタイプIIのエラーを特徴づけようとしています。特に、私はと知識に加えて、もう1つのエラーを制限することに興味があります。
私が求めている質問の関係についてmath.SE上の全変動距離の間にと仮説検定には、私は受け入れたことの答えを受けました。その答えは理にかなっていますが、問題に関連するため、総変動距離と仮説検定の関係の背後にあるより深い意味に心を包むことができませんでした。したがって、私はこのフォーラムを利用することにしました。
私の最初の質問は次のとおりです。全体の変動は、タイプIとタイプIIのエラーの確率の合計にバインドされていますか?本質的に、サンプルがいずれかの分布によって生成された可能性があるゼロ以外の確率がある限り、エラーの少なくとも1つの確率はゼロ以外でなければなりません。基本的に、仮説テスターが信号処理をどれほど行っても、間違いを犯す可能性を回避することはできません。そして、総変動はその正確な可能性を制限します。私の理解は正しいですか?
タイプIとIIのエラーと基になる確率分布とQの間には、KLダイバージェンスという別の関係もあります。したがって、私の2番目の質問は次のとおりです。KLダイバージェンスバウンドは、特定の仮説検定法(対数尤度比法の周りに多く出てくるように思われる)にのみ適用できますか、それともすべての仮説検定法に一般的に適用できますか?すべての仮説検定法に適用できる場合、なぜそれが合計変動限界と非常に異なるように見えるのですか?動作は異なりますか?
そして私の根底にある質問は、私がどちらかのバウンドを使用する必要がある所定の一連の状況がありますか、それとも純粋に便利な問題ですか?ある拘束を使用して、他の拘束を使用して結果をいつ導出する必要がありますか?
これらの質問が些細なものである場合はお詫び申し上げます。私はコンピュータサイエンティストです(つまり、これは私には空想的なパターンマッチングの問題のようです:))。しかし、私はこの仮説テストのすべてを学び始めたばかりです。必要に応じて、質問を明確にするために最善を尽くします。