結論として、統計について学べば学ぶほど、自分の分野で発表された論文を信用しなくなります。私は単に、研究者が統計を十分に行っていないと信じています。
私はいわば素人です。私は生物学の訓練を受けていますが、統計や数学の正式な教育を受けていません。私はRを楽しんでおり、研究を行う際に適用する方法の理論的基礎のいくつかを読む(そして理解する)努力をすることがよくあります。今日分析を行っている大多数の人々が実際に正式に訓練されていなくても、私は驚かないでしょう。私は約20のオリジナルの論文を発表しましたが、その一部は有名なジャーナルに受け入れられ、統計学者は頻繁にレビュープロセスに関与しています。私の分析には、通常、生存分析、線形回帰、ロジスティック回帰、混合モデルが含まれます。レビューアーがモデルの仮定、適合、評価について尋ねたことはありません。
したがって、モデルの仮定、適合、評価についてあまり気にしませんでした。仮説から始め、回帰を実行し、結果を提示します。場合によってはこれらのことを評価しようと努力しましたが、常に「すべての仮定を満たしていませんでしたが、結果(「主題の知識」)を信頼しているので、もっともらしいので大丈夫です」統計学者に相談するとき、彼らはいつも同意するように思われました。
今、私は自分で分析を行う他の統計学者と非統計学者(化学者、医師、生物学者)と話をしました。人々はこれらすべての仮定と正式な評価についてあまり気にしません。しかし、CVには、残差、モデルの適合、評価方法、固有値、ベクトルなどについて尋ねる人がたくさんいます。このように言えば、lme4が大きな固有値について警告するとき、そのユーザーの多くがそれに対処することを気にかけていることを本当に疑います...
それは余分な努力の価値がありますか?公開されているすべての結果の大部分がこれらの仮定を尊重しておらず、おそらくそれらを評価していない可能性はありませんか?データベースは毎日大きくなり、データが大きくなると仮定と評価はそれほど重要ではなくなるという考えがあるため、これはおそらく大きな問題です。
私は絶対に間違っている可能性がありますが、これは私がこれを認識した方法です。
更新: StasKからの引用(下):http : //www.nature.com/news/science-joins-push-to-screen-statistics-in-papers-1.15509