画像特徴の検出とマッチングの目的
私は画像処理とコンピュータービジョンの新人なので、この質問はあなたには馬鹿げているかもしれません。 Harris、Hessian、SIFT、SURFなど、いくつかの特徴検出および記述アルゴリズムを学びました。画像を処理してそれらのキーポイントを見つけ、それぞれの記述子を計算します。記述子は、特徴照合に使用されます。 私はSIFTとSURFを試してみましたが、2つの画像(1つは回転して少しアフィンされている)の場合、それらは機能によく一致せず、ほぼ100の特徴点のうち10マッチは良いです。 だから私は思う これらの特徴検出アルゴリズムを実際に何に使用できますか?特徴の検出とマッチングのためのより堅牢なアルゴリズムはありますか?または、SIFTとSURFは既に良好ですが、さらに使用するために調整する必要がありますか? もう1つの問題は、これらのアルゴリズムは(マルチコアの実装を考慮せずに)リアルタイムアプリケーションには適していないと思いましたが、リアルタイムで機能し応答する商用製品(Kinectなど)があることです。これらの製品も、見たものから機能を検出して照合すると思いますが、SIFTなどのアルゴリズムを使用していますか?どのようにして機能をうまく検出できるでしょうか? 知識が限られているため、2つの画像で同じオブジェクトを見つけたり、ホモグラフィを推定したりするために機能マッチングを使用できることはわかっていますが、機能マッチングの他の目的はありますか?