私はこの問題をどのように攻撃するのが最善かを研究し、解明しようとしています。音楽処理、画像処理、信号処理にまたがるので、それを見る方法は無数にあります。純粋なsig-procドメインでは複雑に見えるかもしれないことは、画像や音楽の処理を行う人々によって簡単に(そしてすでに解決されているので)アプローチするための最良の方法について尋ねたかったのです。とにかく、問題は次のとおりです。
問題の私の手描きを許せば、次を見ることができます:
上の図から、3つの異なる「タイプ」の信号があります。最初のパルスは、からまで周波数を「ステップアップ」して、繰り返すパルスです。特定のパルス持続時間と特定のパルス繰り返し時間を持っています。f 4
2番目のものはにのみ存在しますが、パルス長が短く、パルス繰り返し周波数が高速です。
最後に、3番目はトーンです。
問題は、信号1、信号2、および信号3を区別できる分類器を作成できるように、どのようにこの問題に取り組むかです。つまり、シグナルの1つをフィードすると、このシグナルがそうであることがわかります。対角線混同行列を与える最適な分類子は何ですか?
いくつかの追加のコンテキストと私がこれまで考えてきたこと:
私が言ったように、これは多くの分野にまたがっています。私が座ってこれと戦争に行く前に、どの方法論がすでに存在しているのかを尋ねたかった。ホイールを誤って再発明したくありません。さまざまな視点から見た考えをいくつか紹介します。
信号処理の観点: 私が検討したことの1つは、ケプストラム分析を行い、ケプストラムのGabor Bandwidthを他の2と区別するために使用し、次にケプストラムの最高ピークを測定することでした。シグナル-2から1。それが私の現在の信号処理作業ソリューションです。
画像処理の観点:ここでは、スペクトログラムに対して実際に画像を作成できるので、その分野の何かを活用できるのではないかと考えています。私はこの部分に精通していませんが、ハフ変換を使用して「ライン」検出を行い、ラインを「カウント」(ラインとブロブではない場合はどうですか?)してそこから行くのはどうですか?もちろん、スペクトログラムを撮影する任意の時点で、表示されるすべてのパルスが時間軸に沿ってシフトする可能性がありますので、これは問題になりますか?わからない...
音楽処理の観点:確かに信号処理のサブセットですが、signal-1には特定の、おそらく反復的な(音楽的?)品質があり、music-procの人々は常に見ており、すでに解決済みです多分楽器を区別する?確かではありませんが、考えは私に起こりました。おそらく、この立場はそれを見る最良の方法であり、時間領域の塊を取り、それらのステップレートをからかいますか?繰り返しますが、これは私の分野ではありませんが、これは以前に見られたものだと強く疑っています... 3つの信号すべてを異なる種類の楽器として見ることができますか?
また、かなりの量のトレーニングデータがあることも付け加える必要があります。そのため、これらの方法のいくつかを使用すると、特徴抽出を行うことができ、K-Nearest Neighborを使用できますが、それは単なる考えです。
とにかく、これは私が今立っている場所です、どんな助けも感謝しています。
ありがとう!
コメントに基づく編集:
はい、、、、はすべて事前に知られています。(いくつかの差異が、は非常に少ない。例えば、私たちがいることを知っていると言うことができます = 400kHzには、それは401.32 kHzででてくるかもしれません。しかしまでの距離ので、高いです比較して500 kHzであるかもしれない。)信号-1常にこれらの4つの既知の周波数を踏むことになります。Signal-2には常に1つの周波数があります。f 2 f 3 f 4 f 1 f 2 f 2
信号の3つのクラスすべてのパルス繰り返し率とパルス長もすべて事前にわかっています。(ある程度の分散がありますが、非常にわずかです)。ただし、信号1と2のパルス繰り返し率とパルス長は常にわかっていますが、それらは範囲です。幸いなことに、これらの範囲はまったく重複していません。
入力はリアルタイムで入力される連続時系列ですが、信号1、2、および3は相互に排他的であると仮定できます。つまり、信号の1つだけが任意の時点で存在するということです。また、任意の時点で処理するためにどれだけの時間チャンクを使用するかについて、多くの柔軟性があります。
データはノイズを含む可能性があり、既知の、、、ない帯域に偽のトーンなどがある可能性があります。これはかなり可能です。ただし、問題を「始める」ために、中程度のSNRを想定できます。f 2 f 3 f 4