で、この論文、HonarvarとParamesranは非常にいい再帰的な方法で、ラジアルゼルニケ多項式を計算するための興味深い方法を導き出します。漸化式大きな整数除算または乗算することなく、驚くほど簡単である:
Rメートルん(ρ )= ρ (R| m−1 |n − 1(ρ )+ Rm + 1n − 1(ρ )) − Rメートルn − 2(ρ )
これは、次のOctaveスクリプトに実装されています。
clear % Tested with Octave instead of Matlab
N = 120;
n_r = 1000;
R = cell(N+1,N+1);
rho = [0:n_r]/n_r;
rho_x_2 = 2*[0:n_r]/n_r;
R{0+1,0+1} = ones(1,n_r+1); % R^0_0 Unfortunately zero based cell indexing is not possible
R{1+1,1+1} = R{0+1,0+1}.*rho; % R^1_1 ==> R{...+1,...+1} etc.
for n = 2:N,
if bitget(n,1) == 0, % n is even
R{0+1,n+1} = -R{0+1,n-2+1}+rho_x_2.*R{1+1,n-1+1}; % R^0_n
m_lo = 2;
m_hi = n-2;
else
m_lo = 1;
m_hi = n-1;
end
for m = m_lo:2:m_hi,
R{m+1,n+1} = rho.*(R{m-1+1,n-1+1}+R{m+1+1,n-1+1})-R{m+1,n-2+1}; % R^m_n
end
R{n+1,n+1} = rho.*R{n-1+1,n-1+1}; % R^n_n
end;
Z = @(m,n,rho) (-1)^((n-m)/2) * rho.^m .* jacobiPD((n-m)/2,m,0,1-2*rho.^2);
m = 22;
n = 112;
figure
plot(rho,Z(m,n,rho))
hold on
plot(rho,R{m+1,n+1},'r');
xlabel("rho")
ylabel("R^{22}_{112}(rho)")
legend("via Jacobi","recursive");
%print -djpg plt.jpg
m = 0;
n = 46;
max_diff_m_0_n_46 = norm(Z(m,n,rho)-R{m+1,n+1},inf)
たとえば、このコードによって生成された図は、 m = 22n = 112ρ = 0.7
m = 0n = 461.4e-10