Intel i7プロセッサのメインメモリだけでなく、L1、L2、L3キャッシュにアクセスするためのおおよその時間(ナノ秒単位)を誰かに教えてもらえますか?
これは特にプログラミングの問題ではありませんが、これらの種類の速度の詳細を知ることは、いくつかの低レイテンシのプログラミング課題にとって必要です。
Intel i7プロセッサのメインメモリだけでなく、L1、L2、L3キャッシュにアクセスするためのおおよその時間(ナノ秒単位)を誰かに教えてもらえますか?
これは特にプログラミングの問題ではありませんが、これらの種類の速度の詳細を知ることは、いくつかの低レイテンシのプログラミング課題にとって必要です。
回答:
これは、i7およびXeonのプロセッサ範囲のパフォーマンス分析ガイドです。私は強調すべきです、これはあなたが必要とするもの以上のものを持っています(例えば、いくつかのタイミングとサイクルについては例えば22ページをチェックしてください)。
さらに、このページには、クロックサイクルなどの詳細がいくつかあります。2番目のリンクは、次の数値を提供しました。
Core i7 Xeon 5500 Series Data Source Latency (approximate)               [Pg. 22]
local  L1 CACHE hit,                              ~4 cycles (   2.1 -  1.2 ns )
local  L2 CACHE hit,                             ~10 cycles (   5.3 -  3.0 ns )
local  L3 CACHE hit, line unshared               ~40 cycles (  21.4 - 12.0 ns )
local  L3 CACHE hit, shared line in another core ~65 cycles (  34.8 - 19.5 ns )
local  L3 CACHE hit, modified in another core    ~75 cycles (  40.2 - 22.5 ns )
remote L3 CACHE (Ref: Fig.1 [Pg. 5])        ~100-300 cycles ( 160.7 - 30.0 ns )
local  DRAM                                                   ~60 ns
remote DRAM                                                  ~100 ns
EDIT2:
 
最も重要なのは、引用された表の下の次のような通知です。
「注:これらの値は概算です。コアとアンコアの周波数、メモリの速度、BIOSの設定、DIMMの数、ETCなどに依存します。お客様の走行距離は異なる場合があります。」
編集:上記のインテルのドキュメントは、タイミング/サイクル情報と同様に、i7およびXeonのプロセッサ範囲の(パフォーマンスの観点から)はるかに(非常に)有用な詳細を扱っていることを強調しておきます。
誰もが知っておくべき数字
           0.5 ns - CPU L1 dCACHE reference
           1   ns - speed-of-light (a photon) travel a 1 ft (30.5cm) distance
           5   ns - CPU L1 iCACHE Branch mispredict
           7   ns - CPU L2  CACHE reference
          71   ns - CPU cross-QPI/NUMA best  case on XEON E5-46*
         100   ns - MUTEX lock/unlock
         100   ns - own DDR MEMORY reference
         135   ns - CPU cross-QPI/NUMA best  case on XEON E7-*
         202   ns - CPU cross-QPI/NUMA worst case on XEON E7-*
         325   ns - CPU cross-QPI/NUMA worst case on XEON E5-46*
      10,000   ns - Compress 1K bytes with Zippy PROCESS
      20,000   ns - Send 2K bytes over 1 Gbps NETWORK
     250,000   ns - Read 1 MB sequentially from MEMORY
     500,000   ns - Round trip within a same DataCenter
  10,000,000   ns - DISK seek
  10,000,000   ns - Read 1 MB sequentially from NETWORK
  30,000,000   ns - Read 1 MB sequentially from DISK
 150,000,000   ns - Send a NETWORK packet CA -> Netherlands
|   |   |   |
|   |   | ns|
|   | us|
| ms|
投稿者:もともとピーター・ノーヴィグによって:
- http://norvig.com/21-days.html#answers
 - http://surana.wordpress.com/2009/01/01/numbers-everyone-should-know/、
- http://sites.google.com/site/io/building-scalable-web-applications-with-google-app-engine
値は減少しましたが、2005年以降は安定しています
        1 ns        L1 cache
        3 ns        Branch mispredict
        4 ns        L2 cache
       17 ns        Mutex lock/unlock
      100 ns        Main memory (RAM)
    2 000 ns (2µs)  1KB Zippy-compress
まだいくつかの改善、2020年の予測
   16 000 ns (16µs) SSD random read (olibre's note: should be less)
  500 000 ns (½ms)  Round trip in datacenter
2 000 000 ns (2ms)  HDD random read (seek)
さらなる理解のために、私は優れたお勧め近代的なキャッシュ・アーキテクチャのプレゼンテーションから(2014年6月)ゲルハルトWellein、ハンネス・ホフマンとディートマーフェイの大学エアランゲン・ニュルンベルクを。
フランス語を話す人は、SpaceFoxの記事と、プロセッサーの機能を開発者と比較して、どちらも作業を続けるために必要な情報を待っている人を歓迎します。
[A]以下の投稿を確認してください。
                    集積回路技術の最後の約44年間、古典的な(非量子)プロセッサは、文字通り、そして物理的に「アスペラとアストラに」進化しました。過去10年間で、古典的なプロセスはいくつかのハードルに近づいてきており、達成可能な物理的な道筋がありません。
Number of logical coresそして成長することができ、まだいない以上、すでにヒット回避物理ベースの天井に不可能ではないにしても、ハード持っ未満、まだ、成長する可能することができます(パワー、ノイズ、「時計」)配電&放熱と成長することができ、まだ問題増加する可能性があり、キャッシュフットプリントが大きいことによる直接的なメリットと、より高速で幅広いメモリI / Oによるメリットと、システム強制コンテキスト切り替えによる間接的なメリットがあります。O(n^2~3)
Frequency [MHz]
Transistor CountO(n^2~3)
Power [W]
Single Thread Perf

(クレジットはLeonardo SurianoとKarl Ruppに送られます)
2020: Still some improvements, prediction for 2025
-------------------------------------------------------------------------
             0.1 ns - NOP
             0.3 ns - XOR, ADD, SUB
             0.5 ns - CPU L1 dCACHE reference           (1st introduced in late 80-ies )
             0.9 ns - JMP SHORT
             1   ns - speed-of-light (a photon) travel a 1 ft (30.5cm) distance -- will stay, throughout any foreseeable future :o)
?~~~~~~~~~~~ 1   ns - MUL ( i**2 = MUL i, i )~~~~~~~~~ doing this 1,000 x is 1 [us]; 1,000,000 x is 1 [ms]; 1,000,000,000 x is 1 [s] ~~~~~~~~~~~~~~~~~~~~~~~~~
           3~4   ns - CPU L2  CACHE reference           (2020/Q1)
             5   ns - CPU L1 iCACHE Branch mispredict
             7   ns - CPU L2  CACHE reference
            10   ns - DIV
            19   ns - CPU L3  CACHE reference           (2020/Q1 considered slow on 28c Skylake)
            71   ns - CPU cross-QPI/NUMA best  case on XEON E5-46*
           100   ns - MUTEX lock/unlock
           100   ns - own DDR MEMORY reference
           135   ns - CPU cross-QPI/NUMA best  case on XEON E7-*
           202   ns - CPU cross-QPI/NUMA worst case on XEON E7-*
           325   ns - CPU cross-QPI/NUMA worst case on XEON E5-46*
|Q>~~~~~ 5,000   ns - QPU on-chip QUBO ( quantum annealer minimiser 1 Qop )
        10,000   ns - Compress 1K bytes with a Zippy PROCESS
        20,000   ns - Send     2K bytes over 1 Gbps  NETWORK
       250,000   ns - Read   1 MB sequentially from  MEMORY
       500,000   ns - Round trip within a same DataCenter
?~~~ 2,500,000   ns - Read  10 MB sequentially from  MEMORY~~(about an empty python process to copy on spawn)~~~~ x ( 1 + nProcesses ) on spawned process instantiation(s), yet an empty python interpreter is indeed not a real-world, production-grade use-case, is it?
    10,000,000   ns - DISK seek
    10,000,000   ns - Read   1 MB sequentially from  NETWORK
?~~ 25,000,000   ns - Read 100 MB sequentially from  MEMORY~~(somewhat light python process to copy on spawn)~~~~ x ( 1 + nProcesses ) on spawned process instantiation(s)
    30,000,000   ns - Read 1 MB sequentially from a  DISK
?~~ 36,000,000   ns - Pickle.dump() SER a 10 MB object for IPC-transfer and remote DES in spawned process~~~~~~~~ x ( 2 ) for a single 10MB parameter-payload SER/DES + add an IPC-transport costs thereof or NETWORK-grade transport costs, if going into [distributed-computing] model Cluster ecosystem
   150,000,000   ns - Send a NETWORK packet CA -> Netherlands
  |   |   |   |
  |   |   | ns|
  |   | us|
  | ms|
Still some improvements, prediction for 2020 (Ref. olibre's answer below)
-------------------------------------------------------------------------
   16 000 ns ( 16 µs) SSD random read (olibre's note: should be less)
  500 000 ns (  ½ ms) Round trip in datacenter
2 000 000 ns (  2 ms) HDD random read (seek)
In 2015 there are currently available:
========================================================================
      820 ns ( 0.8µs)     random read from a SSD-DataPlane
    1 200 ns ( 1.2µs) Round trip in datacenter
    1 200 ns ( 1.2µs)     random read from a HDD-DataPlane
最も単純なCPU /キャッシュ/ DRAMラインナップ(均一なメモリアクセスモデルでも)を比較するのは簡単な作業ではありません。DRAM速度はレイテンシを決定する要因であり、ロードされたレイテンシ(飽和システム)は後者が支配し、エンタープライズアプリケーションでは、アイドル状態の完全にアンロードされたシステム以上のものが発生します。
                    +----------------------------------- 5,6,7,8,9,..12,15,16 
                    |                               +--- 1066,1333,..2800..3300
                    v                               v
First  word = ( ( CAS latency * 2 ) + ( 1 - 1 ) ) / Data Rate  
Fourth word = ( ( CAS latency * 2 ) + ( 4 - 1 ) ) / Data Rate
Eighth word = ( ( CAS latency * 2 ) + ( 8 - 1 ) ) / Data Rate
                                        ^----------------------- 7x .. difference
******************************** 
So:
===
resulting DDR3-side latencies are between _____________
                                          3.03 ns    ^
                                                     |
                                         36.58 ns ___v_ based on DDR3 HW facts
GPUエンジンは多くのテクニカルマーケティングを受けていますが、これらのアーキテクチャが実際に経験する実際の長所と短所の両方を理解するためには、内部の深い依存関係が鍵となります(通常、積極的なマーケティングの期待とは大きく異なります)。
   1 ns _________ LETS SETUP A TIME/DISTANCE SCALE FIRST:
          °      ^
          |\     |a 1 ft-distance a foton travels in vacuum ( less in dark-fibre )
          | \    |
          |  \   |
        __|___\__v____________________________________________________
          |    |
          |<-->|  a 1 ns TimeDOMAIN "distance", before a foton arrived
          |    |
          ^    v 
    DATA  |    |DATA
    RQST'd|    |RECV'd ( DATA XFER/FETCH latency )
  25 ns @ 1147 MHz FERMI:  GPU Streaming Multiprocessor REGISTER access
  35 ns @ 1147 MHz FERMI:  GPU Streaming Multiprocessor    L1-onHit-[--8kB]CACHE
  70 ns @ 1147 MHz FERMI:  GPU Streaming Multiprocessor SHARED-MEM access
 230 ns @ 1147 MHz FERMI:  GPU Streaming Multiprocessor texL1-onHit-[--5kB]CACHE
 320 ns @ 1147 MHz FERMI:  GPU Streaming Multiprocessor texL2-onHit-[256kB]CACHE
 350 ns
 700 ns @ 1147 MHz FERMI:  GPU Streaming Multiprocessor GLOBAL-MEM access
 - - - - -
したがって、内部構造を理解することは、アーキテクチャが公開され、多数のベンチマークが自由に利用できる他の分野よりもはるかに重要です。ブラックボックスアプローチでテストされたGPUデバイス内の実際の作業スキームの真実を解き放つために時間と創造性を費やしてくれたGPUマイクロテスターに感謝します。
    +====================| + 11-12 [usec] XFER-LATENCY-up   HostToDevice    ~~~ same as Intel X48 / nForce 790i
    |   |||||||||||||||||| + 10-11 [usec] XFER-LATENCY-down DeviceToHost
    |   |||||||||||||||||| ~  5.5 GB/sec XFER-BW-up                         ~~~ same as DDR2/DDR3 throughput
    |   |||||||||||||||||| ~  5.2 GB/sec XFER-BW-down @8192 KB TEST-LOAD      ( immune to attempts to OverClock PCIe_BUS_CLK 100-105-110-115 [MHz] ) [D:4.9.3]
    |                       
    |              Host-side
    |                                                        cudaHostRegister(   void *ptr, size_t size, unsigned int flags )
    |                                                                                                                 | +-------------- cudaHostRegisterPortable -- marks memory as PINNED MEMORY for all CUDA Contexts, not just the one, current, when the allocation was performed
    |                        ___HostAllocWriteCombined_MEM / cudaHostFree()                                           +---------------- cudaHostRegisterMapped   -- maps  memory allocation into the CUDA address space ( the Device pointer can be obtained by a call to cudaHostGetDevicePointer( void **pDevice, void *pHost, unsigned int flags=0 ); )
    |                        ___HostRegisterPORTABLE___MEM / cudaHostUnregister( void *ptr )
    |   ||||||||||||||||||
    |   ||||||||||||||||||
    |   | PCIe-2.0 ( 4x) | ~ 4 GB/s over  4-Lanes ( PORT #2  )
    |   | PCIe-2.0 ( 8x) | ~16 GB/s over  8-Lanes
    |   | PCIe-2.0 (16x) | ~32 GB/s over 16-Lanes ( mode 16x )
    |
    |   + PCIe-3.0 25-port 97-lanes non-blocking SwitchFabric ... +over copper/fiber
    |                                                                       ~~~ The latest PCIe specification, Gen 3, runs at 8Gbps per serial lane, enabling a 48-lane switch to handle a whopping 96 GBytes/sec. of full duplex peer to peer traffic. [I:]
    |
    | ~810 [ns]    + InRam-"Network" / many-to-many parallel CPU/Memory "message" passing with less than 810 ns latency any-to-any
    |
    |   ||||||||||||||||||
    |   ||||||||||||||||||
    +====================|
    |.pci............HOST|
「全体像」についてのお詫びですが、レイテンシデマスキングには、オンチップのsmREG / L1 / L2-容量とヒット/ミス率から課せられる基本的な制限もあります。
    |.pci............GPU.|
    |                    | FERMI [GPU-CLK] ~ 0.9 [ns] but THE I/O LATENCIES                                                                  PAR -- ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| <800> warps ~~ 24000 + 3200 threads ~~ 27200 threads [!!]
    |                                                                                                                                               ^^^^^^^^|~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [!!]
    |                                                       smREGs________________________________________ penalty +400 ~ +800 [GPU_CLKs] latency ( maskable by 400~800 WARPs ) on <Compile-time>-designed spillover(s) to locMEM__
    |                                                                                                              +350 ~ +700 [ns] @1147 MHz FERMI ^^^^^^^^
    |                                                                                                                          |                    ^^^^^^^^
    |                                                                                                                       +5 [ns] @ 200 MHz FPGA. . . . . . Xilinx/Zync Z7020/FPGA massive-parallel streamline-computing mode ev. PicoBlazer softCPU
    |                                                                                                                          |                    ^^^^^^^^
    |                                                                                                                   ~  +20 [ns] @1147 MHz FERMI ^^^^^^^^
    |                                                             SM-REGISTERs/thread: max  63 for CC-2.x -with only about +22 [GPU_CLKs] latency ( maskable by 22-WARPs ) to hide on [REGISTER DEPENDENCY] when arithmetic result is to be served from previous [INSTR] [G]:10.4, Page-46
    |                                                                                  max  63 for CC-3.0 -          about +11 [GPU_CLKs] latency ( maskable by 44-WARPs ) [B]:5.2.3, Page-73
    |                                                                                  max 128 for CC-1.x                                    PAR -- ||||||||~~~|
    |                                                                                  max 255 for CC-3.5                                    PAR -- ||||||||||||||||||~~~~~~|
    |
    |                                                       smREGs___BW                                 ANALYZE REAL USE-PATTERNs IN PTX-creation PHASE <<  -Xptxas -v          || nvcc -maxrregcount ( w|w/o spillover(s) )
    |                                                                with about 8.0  TB/s BW            [C:Pg.46]
    |                                                                           1.3  TB/s BW shaMEM___  4B * 32banks * 15 SMs * half 1.4GHz = 1.3 TB/s only on FERMI
    |                                                                           0.1  TB/s BW gloMEM___
    |         ________________________________________________________________________________________________________________________________________________________________________________________________________________________
    +========|   DEVICE:3 PERSISTENT                          gloMEM___
    |       _|______________________________________________________________________________________________________________________________________________________________________________________________________________________
    +======|   DEVICE:2 PERSISTENT                          gloMEM___
    |     _|______________________________________________________________________________________________________________________________________________________________________________________________________________________
    +====|   DEVICE:1 PERSISTENT                          gloMEM___
    |   _|______________________________________________________________________________________________________________________________________________________________________________________________________________________
    +==|   DEVICE:0 PERSISTENT                          gloMEM_____________________________________________________________________+440 [GPU_CLKs]_________________________________________________________________________|_GB|
    !  |                                                         |\                                                                +                                                                                           |
    o  |                                                texMEM___|_\___________________________________texMEM______________________+_______________________________________________________________________________________|_MB|
       |                                                         |\ \                                 |\                           +                                               |\                                          |
       |                                              texL2cache_| \ \                               .| \_ _ _ _ _ _ _ _texL2cache +370 [GPU_CLKs] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | \                                   256_KB|
       |                                                         |  \ \                               |  \                         +                                 |\            ^  \                                        |
       |                                                         |   \ \                              |   \                        +                                 | \           ^   \                                       |
       |                                                         |    \ \                             |    \                       +                                 |  \          ^    \                                      |
       |                                              texL1cache_|     \ \                           .|     \_ _ _ _ _ _texL1cache +260 [GPU_CLKs] _ _ _ _ _ _ _ _ _ |   \_ _ _ _ _^     \                                 5_KB|
       |                                                         |      \ \                           |      \                     +                         ^\      ^    \        ^\     \                                    |
       |                                     shaMEM + conL3cache_|       \ \                          |       \ _ _ _ _ conL3cache +220 [GPU_CLKs]           ^ \     ^     \       ^ \     \                              32_KB|
       |                                                         |        \ \                         |        \       ^\          +                         ^  \    ^      \      ^  \     \                                  |
       |                                                         |         \ \                        |         \      ^ \         +                         ^   \   ^       \     ^   \     \                                 |
       |                                   ______________________|__________\_\_______________________|__________\_____^__\________+__________________________________________\_________\_____\________________________________|
       |                  +220 [GPU-CLKs]_|           |_ _ _  ___|\          \ \_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ \ _ _ _ _\_ _ _ _+220 [GPU_CLKs] on re-use at some +50 GPU_CLKs _IF_ a FETCH from yet-in-shaL2cache
       | L2-on-re-use-only +80 [GPU-CLKs]_| 64 KB  L2_|_ _ _   __|\\          \ \_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ \ _ _ _ _\_ _ _ + 80 [GPU_CLKs] on re-use from L1-cached (HIT) _IF_ a FETCH from yet-in-shaL1cache
       | L1-on-re-use-only +40 [GPU-CLKs]_|  8 KB  L1_|_ _ _    _|\\\          \_\__________________________________\________\_____+ 40 [GPU_CLKs]_____________________________________________________________________________|
       | L1-on-re-use-only + 8 [GPU-CLKs]_|  2 KB  L1_|__________|\\\\__________\_\__________________________________\________\____+  8 [GPU_CLKs]_________________________________________________________conL1cache      2_KB|
       |     on-chip|smREG +22 [GPU-CLKs]_|           |t[0_______^:~~~~~~~~~~~~~~~~\:________]
       |CC-  MAX    |_|_|_|_|_|_|_|_|_|_|_|           |t[1_______^                  :________]
       |2.x   63    |_|_|_|_|_|_|_|_|_|_|_|           |t[2_______^                  :________] 
       |1.x  128    |_|_|_|_|_|_|_|_|_|_|_|           |t[3_______^                  :________]
       |3.5  255 REGISTERs|_|_|_|_|_|_|_|_|           |t[4_______^                  :________]
       |         per|_|_|_|_|_|_|_|_|_|_|_|           |t[5_______^                  :________]
       |         Thread_|_|_|_|_|_|_|_|_|_|           |t[6_______^                  :________]
       |            |_|_|_|_|_|_|_|_|_|_|_|           |t[7_______^     1stHalf-WARP :________]______________
       |            |_|_|_|_|_|_|_|_|_|_|_|           |t[ 8_______^:~~~~~~~~~~~~~~~~~:________]
       |            |_|_|_|_|_|_|_|_|_|_|_|           |t[ 9_______^                  :________]
       |            |_|_|_|_|_|_|_|_|_|_|_|           |t[ A_______^                  :________]
       |            |_|_|_|_|_|_|_|_|_|_|_|           |t[ B_______^                  :________]
       |            |_|_|_|_|_|_|_|_|_|_|_|           |t[ C_______^                  :________]
       |            |_|_|_|_|_|_|_|_|_|_|_|           |t[ D_______^                  :________]
       |            |_|_|_|_|_|_|_|_|_|_|_|           |t[ E_______^                  :________]
       |            |_|_|_|_|_|_|_|_|_|_|_|       W0..|t[ F_______^____________WARP__:________]_____________
       |            |_|_|_|_|_|_|_|_|_|_|_|         ..............             
       |            |_|_|_|_|_|_|_|_|_|_|_|           ............|t[0_______^:~~~~~~~~~~~~~~~\:________]
       |            |_|_|_|_|_|_|_|_|_|_|_|           ............|t[1_______^                 :________]
       |            |_|_|_|_|_|_|_|_|_|_|_|           ............|t[2_______^                 :________] 
       |            |_|_|_|_|_|_|_|_|_|_|_|           ............|t[3_______^                 :________]
       |            |_|_|_|_|_|_|_|_|_|_|_|           ............|t[4_______^                 :________]
       |            |_|_|_|_|_|_|_|_|_|_|_|           ............|t[5_______^                 :________]
       |            |_|_|_|_|_|_|_|_|_|_|_|           ............|t[6_______^                 :________]
       |            |_|_|_|_|_|_|_|_|_|_|_|           ............|t[7_______^    1stHalf-WARP :________]______________
       |            |_|_|_|_|_|_|_|_|_|_|_|           ............|t[ 8_______^:~~~~~~~~~~~~~~~~:________]
       |            |_|_|_|_|_|_|_|_|_|_|_|           ............|t[ 9_______^                 :________]
       |            |_|_|_|_|_|_|_|_|_|_|_|           ............|t[ A_______^                 :________]
       |            |_|_|_|_|_|_|_|_|_|_|_|           ............|t[ B_______^                 :________]
       |            |_|_|_|_|_|_|_|_|_|_|_|           ............|t[ C_______^                 :________]
       |            |_|_|_|_|_|_|_|_|_|_|_|           ............|t[ D_______^                 :________]
       |            |_|_|_|_|_|_|_|_|_|_|_|           ............|t[ E_______^                 :________]
       |            |_|_|_|_|_|_|_|_|_|_|_|       W1..............|t[ F_______^___________WARP__:________]_____________
       |            |_|_|_|_|_|_|_|_|_|_|_|         ....................................................
       |            |_|_|_|_|_|_|_|_|_|_|_|          ...................................................|t[0_______^:~~~~~~~~~~~~~~~\:________]
       |            |_|_|_|_|_|_|_|_|_|_|_|          ...................................................|t[1_______^                 :________]
       |            |_|_|_|_|_|_|_|_|_|_|_|          ...................................................|t[2_______^                 :________] 
       |            |_|_|_|_|_|_|_|_|_|_|_|          ...................................................|t[3_______^                 :________]
       |            |_|_|_|_|_|_|_|_|_|_|_|          ...................................................|t[4_______^                 :________]
       |            |_|_|_|_|_|_|_|_|_|_|_|          ...................................................|t[5_______^                 :________]
       |            |_|_|_|_|_|_|_|_|_|_|_|          ...................................................|t[6_______^                 :________]
       |            |_|_|_|_|_|_|_|_|_|_|_|          ...................................................|t[7_______^    1stHalf-WARP :________]______________
       |            |_|_|_|_|_|_|_|_|_|_|_|          ...................................................|t[ 8_______^:~~~~~~~~~~~~~~~~:________]
       |            |_|_|_|_|_|_|_|_|_|_|_|          ...................................................|t[ 9_______^                 :________]
       |            |_|_|_|_|_|_|_|_|_|_|_|          ...................................................|t[ A_______^                 :________]
       |            |_|_|_|_|_|_|_|_|_|_|_|          ...................................................|t[ B_______^                 :________]
       |            |_|_|_|_|_|_|_|_|_|_|_|          ...................................................|t[ C_______^                 :________]
       |            |_|_|_|_|_|_|_|_|_|_|_|          ...................................................|t[ D_______^                 :________]
       |            |_|_|_|_|_|_|_|_|_|_|_|          ...................................................|t[ E_______^                 :________]
       |            |_|_|_|_|_|_|_|_|_|_|_|tBlock Wn....................................................|t[ F_______^___________WARP__:________]_____________
       |
       |                   ________________          °°°°°°°°°°°°°°°°°°°°°°°°°°~~~~~~~~~~°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
       |                  /                \   CC-2.0|||||||||||||||||||||||||| ~masked  ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
       |                 /                  \  1.hW  ^|^|^|^|^|^|^|^|^|^|^|^|^| <wait>-s ^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|
       |                /                    \ 2.hW  |^|^|^|^|^|^|^|^|^|^|^|^|^          |^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^|^
       |_______________/                      \______I|I|I|I|I|I|I|I|I|I|I|I|I|~~~~~~~~~~I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|
       |~~~~~~~~~~~~~~/ SM:0.warpScheduler    /~~~~~~~I~I~I~I~I~I~I~I~I~I~I~I~I~~~~~~~~~~~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I
       |              \          |           //
       |               \         RR-mode    //
       |                \    GREEDY-mode   //
       |                 \________________//
       |                   \______________/SM:0__________________________________________________________________________________
       |                                  |           |t[ F_______^___________WARP__:________]_______
       |                                ..|SM:1__________________________________________________________________________________
       |                                  |           |t[ F_______^___________WARP__:________]_______
       |                                ..|SM:2__________________________________________________________________________________
       |                                  |           |t[ F_______^___________WARP__:________]_______
       |                                ..|SM:3__________________________________________________________________________________
       |                                  |           |t[ F_______^___________WARP__:________]_______
       |                                ..|SM:4__________________________________________________________________________________
       |                                  |           |t[ F_______^___________WARP__:________]_______
       |                                ..|SM:5__________________________________________________________________________________
       |                                  |           |t[ F_______^___________WARP__:________]_______
       |                                ..|SM:6__________________________________________________________________________________
       |                                  |           |t[ F_______^___________WARP__:________]_______
       |                                ..|SM:7__________________________________________________________________________________
       |                                  |           |t[ F_______^___________WARP__:________]_______
       |                                ..|SM:8__________________________________________________________________________________
       |                                  |           |t[ F_______^___________WARP__:________]_______
       |                                ..|SM:9__________________________________________________________________________________
       |                                ..|SM:A      |t[ F_______^___________WARP__:________]_______
       |                                ..|SM:B      |t[ F_______^___________WARP__:________]_______
       |                                ..|SM:C      |t[ F_______^___________WARP__:________]_______
       |                                ..|SM:D      |t[ F_______^___________WARP__:________]_______
       |                                  |_______________________________________________________________________________________
       */
低遅延の動機付けされた設計では、「I / O油圧」をリバースエンジニアリングする必要があり(0 1-XFERは本質的に非圧縮性であるため)、結果として生じる遅延は、計算負荷の高いGPGPUソリューションのパフォーマンスエンベロープを支配します(読み取り:処理コストがレイテンシXFERの許容範囲をもう少し大きくしている場合...)かどうか(読み取り:どこかに(誰かの驚きかもしれません)エンドツーエンド処理では、CPUはGPUファブリックより高速です[引用あり] )。
この「階段」プロットを見て、さまざまなアクセス時間を完全に示します(クロックティックの観点から)。赤のCPUに「ステップ」が追加されていることに注目してください。これはおそらくL4があるためです(他のものにはない)。

コンピュータサイエンスでは、これは「I / Oの複雑さ」と呼ばれます。