任意の数値(0より大きい整数だけでなく)を有効数字Nに丸めるにはどうすればよいですか?
たとえば、有効数字3桁に四捨五入したい場合は、次の式を使用できます。
1,239,451およびリターン1,240,000
12.1257および12.1を返します
.0681およびリターン.0681
5とリターン5
当然のことながら、アルゴリズムをハードコーディングしてN of 3のみを処理することはできませんが、それが出発点になります。
任意の数値(0より大きい整数だけでなく)を有効数字Nに丸めるにはどうすればよいですか?
たとえば、有効数字3桁に四捨五入したい場合は、次の式を使用できます。
1,239,451およびリターン1,240,000
12.1257および12.1を返します
.0681およびリターン.0681
5とリターン5
当然のことながら、アルゴリズムをハードコーディングしてN of 3のみを処理することはできませんが、それが出発点になります。
回答:
これは、他の回答にある12.100000000000001バグのないJavaの同じコードです。
また、繰り返されるコードを削除power
し、n - d
完了時にフローティングの問題を防ぐために整数型に変更し、長い中間体をより明確にしました
このバグは、大きな数と小さな数を掛けることによって引き起こされました。代わりに、同じサイズの2つの数値を分割します。
編集
より多くのバグを修正しました。NaNになるため、0のチェックを追加しました。関数が実際に負の数で機能するようになりました(負の数のログは複素数であるため、元のコードは負の数を処理しません)
public static double roundToSignificantFigures(double num, int n) {
if(num == 0) {
return 0;
}
final double d = Math.ceil(Math.log10(num < 0 ? -num: num));
final int power = n - (int) d;
final double magnitude = Math.pow(10, power);
final long shifted = Math.round(num*magnitude);
return shifted/magnitude;
}
短くて甘いJavaScriptの実装は次のとおりです。
function sigFigs(n, sig) {
var mult = Math.pow(10, sig - Math.floor(Math.log(n) / Math.LN10) - 1);
return Math.round(n * mult) / mult;
}
alert(sigFigs(1234567, 3)); // Gives 1230000
alert(sigFigs(0.06805, 3)); // Gives 0.0681
alert(sigFigs(5, 3)); // Gives 5
n==0
:)
Math.log(n) / Math.LN10
ではなく、やる理由はありMath.log10(n)
ますか?
Math.floor(x) == Math.ceil(x) - 1
ますか?x
整数の場合はそうではないからです。pow
関数の2番目の引数は次のようになりますsig - Math.ceil(Math.log(n) / Math.LN10)
(または単に使用しますMath.log10
)
概要:
double roundit(double num, double N)
{
double d = log10(num);
double power;
if (num > 0)
{
d = ceil(d);
power = -(d-N);
}
else
{
d = floor(d);
power = -(d-N);
}
return (int)(num * pow(10.0, power) + 0.5) * pow(10.0, -power);
}
したがって、最初のゼロ以外の桁の小数点以下の桁数を見つけ、次のN-1桁を保存してから、残りに基づいてN番目の桁を丸める必要があります。
最初にログを使用できます。
log 1239451 = 6.09
log 12.1257 = 1.08
log 0.0681 = -1.16
したがって、0より大きい数値の場合は、ログの天井を取ります。数値が0未満の場合は、ログのフロアを取ります。
これd
で、最初のケースで7、2番目のケースで2、3番目のケースで-2の数字が得られます。
(d-N)
3桁目を丸める必要があります。何かのようなもの:
double roundedrest = num * pow(10, -(d-N));
pow(1239451, -4) = 123.9451
pow(12.1257, 1) = 121.257
pow(0.0681, 4) = 681
次に、標準の丸めを行います。
roundedrest = (int)(roundedrest + 0.5);
そして、捕虜を元に戻します。
roundednum = pow(roundedrest, -(power))
ここで、電力は上記で計算された電力です。
精度について:Pyrolisticalの答えは実際の結果に実際に近いです。ただし、どのような場合でも12.1を正確に表すことはできないことに注意してください。次のように回答を印刷する場合:
System.out.println(new BigDecimal(n));
答えは次のとおりです。
Pyro's: 12.0999999999999996447286321199499070644378662109375
Mine: 12.10000000000000142108547152020037174224853515625
Printing 12.1 directly: 12.0999999999999996447286321199499070644378662109375
だから、パイロの答えを使ってください!
「短くて甘い」JavaScriptの実装ではありません
Number(n).toPrecision(sig)
例えば
alert(Number(12345).toPrecision(3)
?
申し訳ありませんが、ここでは面白くありません。Claudiuの「roundit」関数とJavaScriptの.toPrecisionを使用すると、結果が異なりますが、最後の桁が丸められるだけです。
JavaScript:
Number(8.14301).toPrecision(4) == 8.143
。ネット
roundit(8.14301,4) == 8.144
Number(814301).toPrecision(4) == "8.143e+5"
。これをユーザーに表示する場合、通常は必要なものではありません。
Pyrolisticalの(非常に素晴らしい!)ソリューションにはまだ問題があります。Javaの最大double値は10 ^ 308のオーダーであり、最小値は10 ^ -324のオーダーです。したがって、roundToSignificantFigures
10の10の累乗以内の何かに関数を適用すると、問題が発生する可能性がありDouble.MIN_VALUE
ます。たとえば、あなたが電話するとき
roundToSignificantFigures(1.234E-310, 3);
その場合、変数power
の値は3-(-309)= 312になります。その結果、変数magnitude
はになりInfinity
、それ以降はすべてゴミになります。幸いなことに、これは克服できない問題ではありません。オーバーフローしているのは要因 だけmagnitude
です。本当に重要なのは製品 num * magnitude
であり、それはあふれません。これを解決する1つの方法は、因数による乗算magintude
を2つのステップに分割することです。
public static double roundToNumberOfSignificantDigits(double num, int n) {
final double maxPowerOfTen = Math.floor(Math.log10(Double.MAX_VALUE));
if(num == 0) {
return 0;
}
final double d = Math.ceil(Math.log10(num < 0 ? -num: num));
final int power = n - (int) d;
double firstMagnitudeFactor = 1.0;
double secondMagnitudeFactor = 1.0;
if (power > maxPowerOfTen) {
firstMagnitudeFactor = Math.pow(10.0, maxPowerOfTen);
secondMagnitudeFactor = Math.pow(10.0, (double) power - maxPowerOfTen);
} else {
firstMagnitudeFactor = Math.pow(10.0, (double) power);
}
double toBeRounded = num * firstMagnitudeFactor;
toBeRounded *= secondMagnitudeFactor;
final long shifted = Math.round(toBeRounded);
double rounded = ((double) shifted) / firstMagnitudeFactor;
rounded /= secondMagnitudeFactor;
return rounded;
}
このJavaソリューションはどうですか?
double roundToSignificantFigure(double num、intprecision){ 新しいBigDecimal(num)を返す .round(new MathContext(precision、RoundingMode.HALF_EVEN)) .doubleValue(); }
これは5年遅れて発生しましたが、同じ問題を抱えている他の人たちと共有します。シンプルでコード側の計算がないので気に入っています。詳細については、有効数字を表示するための組み込みメソッドを参照してください。
これは、単に印刷したい場合です。
public String toSignificantFiguresString(BigDecimal bd, int significantFigures){
return String.format("%."+significantFigures+"G", bd);
}
これはあなたがそれを変換したい場合です:
public BigDecimal toSignificantFigures(BigDecimal bd, int significantFigures){
String s = String.format("%."+significantFigures+"G", bd);
BigDecimal result = new BigDecimal(s);
return result;
}
実際の例を次に示します。
BigDecimal bd = toSignificantFigures(BigDecimal.valueOf(0.0681), 2);
[修正、2009-10-26]
基本的に、N個の重要な小数桁の場合:
•数値に10Nを掛け
ます•0.5を加算し
ます•小数桁を切り捨てます(つまり、結果を整数に切り捨て
ます)• 10Nで割ります
N個の重要な整数(非分数)桁の場合:
•数値を10Nで除算し
ます•0.5を加算し
ます•小数桁を切り捨てます(つまり、結果を整数に切り捨て
ます)• 10Nを掛けます
これは、たとえば、「INT」(整数の切り捨て)演算子を持つ任意の計算機で実行できます。
/**
* Set Significant Digits.
* @param value value
* @param digits digits
* @return
*/
public static BigDecimal setSignificantDigits(BigDecimal value, int digits) {
//# Start with the leftmost non-zero digit (e.g. the "1" in 1200, or the "2" in 0.0256).
//# Keep n digits. Replace the rest with zeros.
//# Round up by one if appropriate.
int p = value.precision();
int s = value.scale();
if (p < digits) {
value = value.setScale(s + digits - p); //, RoundingMode.HALF_UP
}
value = value.movePointRight(s).movePointLeft(p - digits).setScale(0, RoundingMode.HALF_UP)
.movePointRight(p - digits).movePointLeft(s);
s = (s > (p - digits)) ? (s - (p - digits)) : 0;
return value.setScale(s);
}
Visual Basic.NETでのPyrolistical(現在のトップアンサー)のコードは次のとおりです。
Public Shared Function roundToSignificantDigits(ByVal num As Double, ByVal n As Integer) As Double
If (num = 0) Then
Return 0
End If
Dim d As Double = Math.Ceiling(Math.Log10(If(num < 0, -num, num)))
Dim power As Integer = n - CInt(d)
Dim magnitude As Double = Math.Pow(10, power)
Dim shifted As Double = Math.Round(num * magnitude)
Return shifted / magnitude
End Function
これはGoで必要でしたが、Go標準ライブラリがないためmath.Round()
(go1.10より前)少し複雑でした。だから私もそれをかき立てなければなりませんでした。これがPyrolisticalの優れた答えの私の翻訳です:
// TODO: replace in go1.10 with math.Round()
func round(x float64) float64 {
return float64(int64(x + 0.5))
}
// SignificantDigits rounds a float64 to digits significant digits.
// Translated from Java at https://stackoverflow.com/a/1581007/1068283
func SignificantDigits(x float64, digits int) float64 {
if x == 0 {
return 0
}
power := digits - int(math.Ceil(math.Log10(math.Abs(x))))
magnitude := math.Pow(10, float64(power))
shifted := round(x * magnitude)
return shifted / magnitude
}
FloatToStrFを使用するだけで、10の累乗などでこれらすべての計算を行うことを回避できます。
FloatToStrFを使用すると、(とりわけ)出力値(文字列)の精度(有効数字の数)を選択できます。もちろん、StrToFloatをこれに適用して、丸められた値を浮動小数点数として取得することもできます。
ここを参照してください: