過剰な値を持つ変数の頻度分布の場合、クラスの値を折りたたむことができます。
ここでは、employrate
変数に過剰な値を設定しています。直接の頻度分布の意味はありません。values_count(normalize=True)
country employrate alcconsumption
0 Afghanistan 55.700001 .03
1 Albania 11.000000 7.29
2 Algeria 11.000000 .69
3 Andorra nan 10.17
4 Angola 75.699997 5.57
.. ... ... ...
208 Vietnam 71.000000 3.91
209 West Bank and Gaza 32.000000
210 Yemen, Rep. 39.000000 .2
211 Zambia 61.000000 3.56
212 Zimbabwe 66.800003 4.96
[213 rows x 3 columns]
values_count(normalize=True)
分類のない頻度分布、ここでの結果の長さは139です(頻度分布としては無意味に思われます)。
print(gm["employrate"].value_counts(sort=False,normalize=True))
50.500000 0.005618
61.500000 0.016854
46.000000 0.011236
64.500000 0.005618
63.500000 0.005618
58.599998 0.005618
63.799999 0.011236
63.200001 0.005618
65.599998 0.005618
68.300003 0.005618
Name: employrate, Length: 139, dtype: float64
分類を置くことで、特定の範囲のすべての値、つまり
1として0-10
2として11-20
21から30、3など。
gm["employrate"]=gm["employrate"].str.strip().dropna()
gm["employrate"]=pd.to_numeric(gm["employrate"])
gm['employrate'] = np.where(
(gm['employrate'] <=10) & (gm['employrate'] > 0) , 1, gm['employrate']
)
gm['employrate'] = np.where(
(gm['employrate'] <=20) & (gm['employrate'] > 10) , 1, gm['employrate']
)
gm['employrate'] = np.where(
(gm['employrate'] <=30) & (gm['employrate'] > 20) , 2, gm['employrate']
)
gm['employrate'] = np.where(
(gm['employrate'] <=40) & (gm['employrate'] > 30) , 3, gm['employrate']
)
gm['employrate'] = np.where(
(gm['employrate'] <=50) & (gm['employrate'] > 40) , 4, gm['employrate']
)
gm['employrate'] = np.where(
(gm['employrate'] <=60) & (gm['employrate'] > 50) , 5, gm['employrate']
)
gm['employrate'] = np.where(
(gm['employrate'] <=70) & (gm['employrate'] > 60) , 6, gm['employrate']
)
gm['employrate'] = np.where(
(gm['employrate'] <=80) & (gm['employrate'] > 70) , 7, gm['employrate']
)
gm['employrate'] = np.where(
(gm['employrate'] <=90) & (gm['employrate'] > 80) , 8, gm['employrate']
)
gm['employrate'] = np.where(
(gm['employrate'] <=100) & (gm['employrate'] > 90) , 9, gm['employrate']
)
print(gm["employrate"].value_counts(sort=False,normalize=True))
分類後、頻度分布は明確になります。ここで簡単にわかるように37.64%
、国51-60%
と11.79%
国の間に雇用率があり、国と国の間に雇用率があります71-80%
5.000000 0.376404
7.000000 0.117978
4.000000 0.179775
6.000000 0.264045
8.000000 0.033708
3.000000 0.028090
Name: employrate, dtype: float64
.value_counts().sort_index(1)
、最初の列が多少