4x4行列を反転する方法のサンプルコード実装を探しています。ガウス分布、LU分解などがあることは知っていますが、それらを詳細に調べる代わりに、これを行うためのコードを探しています。
言語は理想的にはC ++であり、データは列優先順に16個のfloatの配列で利用できます。
4x4行列を反転する方法のサンプルコード実装を探しています。ガウス分布、LU分解などがあることは知っていますが、それらを詳細に調べる代わりに、これを行うためのコードを探しています。
言語は理想的にはC ++であり、データは列優先順に16個のfloatの配列で利用できます。
回答:
ここに:
bool gluInvertMatrix(const double m[16], double invOut[16])
{
double inv[16], det;
int i;
inv[0] = m[5] * m[10] * m[15] -
m[5] * m[11] * m[14] -
m[9] * m[6] * m[15] +
m[9] * m[7] * m[14] +
m[13] * m[6] * m[11] -
m[13] * m[7] * m[10];
inv[4] = -m[4] * m[10] * m[15] +
m[4] * m[11] * m[14] +
m[8] * m[6] * m[15] -
m[8] * m[7] * m[14] -
m[12] * m[6] * m[11] +
m[12] * m[7] * m[10];
inv[8] = m[4] * m[9] * m[15] -
m[4] * m[11] * m[13] -
m[8] * m[5] * m[15] +
m[8] * m[7] * m[13] +
m[12] * m[5] * m[11] -
m[12] * m[7] * m[9];
inv[12] = -m[4] * m[9] * m[14] +
m[4] * m[10] * m[13] +
m[8] * m[5] * m[14] -
m[8] * m[6] * m[13] -
m[12] * m[5] * m[10] +
m[12] * m[6] * m[9];
inv[1] = -m[1] * m[10] * m[15] +
m[1] * m[11] * m[14] +
m[9] * m[2] * m[15] -
m[9] * m[3] * m[14] -
m[13] * m[2] * m[11] +
m[13] * m[3] * m[10];
inv[5] = m[0] * m[10] * m[15] -
m[0] * m[11] * m[14] -
m[8] * m[2] * m[15] +
m[8] * m[3] * m[14] +
m[12] * m[2] * m[11] -
m[12] * m[3] * m[10];
inv[9] = -m[0] * m[9] * m[15] +
m[0] * m[11] * m[13] +
m[8] * m[1] * m[15] -
m[8] * m[3] * m[13] -
m[12] * m[1] * m[11] +
m[12] * m[3] * m[9];
inv[13] = m[0] * m[9] * m[14] -
m[0] * m[10] * m[13] -
m[8] * m[1] * m[14] +
m[8] * m[2] * m[13] +
m[12] * m[1] * m[10] -
m[12] * m[2] * m[9];
inv[2] = m[1] * m[6] * m[15] -
m[1] * m[7] * m[14] -
m[5] * m[2] * m[15] +
m[5] * m[3] * m[14] +
m[13] * m[2] * m[7] -
m[13] * m[3] * m[6];
inv[6] = -m[0] * m[6] * m[15] +
m[0] * m[7] * m[14] +
m[4] * m[2] * m[15] -
m[4] * m[3] * m[14] -
m[12] * m[2] * m[7] +
m[12] * m[3] * m[6];
inv[10] = m[0] * m[5] * m[15] -
m[0] * m[7] * m[13] -
m[4] * m[1] * m[15] +
m[4] * m[3] * m[13] +
m[12] * m[1] * m[7] -
m[12] * m[3] * m[5];
inv[14] = -m[0] * m[5] * m[14] +
m[0] * m[6] * m[13] +
m[4] * m[1] * m[14] -
m[4] * m[2] * m[13] -
m[12] * m[1] * m[6] +
m[12] * m[2] * m[5];
inv[3] = -m[1] * m[6] * m[11] +
m[1] * m[7] * m[10] +
m[5] * m[2] * m[11] -
m[5] * m[3] * m[10] -
m[9] * m[2] * m[7] +
m[9] * m[3] * m[6];
inv[7] = m[0] * m[6] * m[11] -
m[0] * m[7] * m[10] -
m[4] * m[2] * m[11] +
m[4] * m[3] * m[10] +
m[8] * m[2] * m[7] -
m[8] * m[3] * m[6];
inv[11] = -m[0] * m[5] * m[11] +
m[0] * m[7] * m[9] +
m[4] * m[1] * m[11] -
m[4] * m[3] * m[9] -
m[8] * m[1] * m[7] +
m[8] * m[3] * m[5];
inv[15] = m[0] * m[5] * m[10] -
m[0] * m[6] * m[9] -
m[4] * m[1] * m[10] +
m[4] * m[2] * m[9] +
m[8] * m[1] * m[6] -
m[8] * m[2] * m[5];
det = m[0] * inv[0] + m[1] * inv[4] + m[2] * inv[8] + m[3] * inv[12];
if (det == 0)
return false;
det = 1.0 / det;
for (i = 0; i < 16; i++)
invOut[i] = inv[i] * det;
return true;
}
これは、GLUライブラリのMESA実装から解除されました。
よりコストのかかるコードと「読みやすい」を探している人なら、私はこれを手に入れました
var A2323 = m.m22 * m.m33 - m.m23 * m.m32 ;
var A1323 = m.m21 * m.m33 - m.m23 * m.m31 ;
var A1223 = m.m21 * m.m32 - m.m22 * m.m31 ;
var A0323 = m.m20 * m.m33 - m.m23 * m.m30 ;
var A0223 = m.m20 * m.m32 - m.m22 * m.m30 ;
var A0123 = m.m20 * m.m31 - m.m21 * m.m30 ;
var A2313 = m.m12 * m.m33 - m.m13 * m.m32 ;
var A1313 = m.m11 * m.m33 - m.m13 * m.m31 ;
var A1213 = m.m11 * m.m32 - m.m12 * m.m31 ;
var A2312 = m.m12 * m.m23 - m.m13 * m.m22 ;
var A1312 = m.m11 * m.m23 - m.m13 * m.m21 ;
var A1212 = m.m11 * m.m22 - m.m12 * m.m21 ;
var A0313 = m.m10 * m.m33 - m.m13 * m.m30 ;
var A0213 = m.m10 * m.m32 - m.m12 * m.m30 ;
var A0312 = m.m10 * m.m23 - m.m13 * m.m20 ;
var A0212 = m.m10 * m.m22 - m.m12 * m.m20 ;
var A0113 = m.m10 * m.m31 - m.m11 * m.m30 ;
var A0112 = m.m10 * m.m21 - m.m11 * m.m20 ;
var det = m.m00 * ( m.m11 * A2323 - m.m12 * A1323 + m.m13 * A1223 )
- m.m01 * ( m.m10 * A2323 - m.m12 * A0323 + m.m13 * A0223 )
+ m.m02 * ( m.m10 * A1323 - m.m11 * A0323 + m.m13 * A0123 )
- m.m03 * ( m.m10 * A1223 - m.m11 * A0223 + m.m12 * A0123 ) ;
det = 1 / det;
return new Matrix4x4() {
m00 = det * ( m.m11 * A2323 - m.m12 * A1323 + m.m13 * A1223 ),
m01 = det * - ( m.m01 * A2323 - m.m02 * A1323 + m.m03 * A1223 ),
m02 = det * ( m.m01 * A2313 - m.m02 * A1313 + m.m03 * A1213 ),
m03 = det * - ( m.m01 * A2312 - m.m02 * A1312 + m.m03 * A1212 ),
m10 = det * - ( m.m10 * A2323 - m.m12 * A0323 + m.m13 * A0223 ),
m11 = det * ( m.m00 * A2323 - m.m02 * A0323 + m.m03 * A0223 ),
m12 = det * - ( m.m00 * A2313 - m.m02 * A0313 + m.m03 * A0213 ),
m13 = det * ( m.m00 * A2312 - m.m02 * A0312 + m.m03 * A0212 ),
m20 = det * ( m.m10 * A1323 - m.m11 * A0323 + m.m13 * A0123 ),
m21 = det * - ( m.m00 * A1323 - m.m01 * A0323 + m.m03 * A0123 ),
m22 = det * ( m.m00 * A1313 - m.m01 * A0313 + m.m03 * A0113 ),
m23 = det * - ( m.m00 * A1312 - m.m01 * A0312 + m.m03 * A0112 ),
m30 = det * - ( m.m10 * A1223 - m.m11 * A0223 + m.m12 * A0123 ),
m31 = det * ( m.m00 * A1223 - m.m01 * A0223 + m.m02 * A0123 ),
m32 = det * - ( m.m00 * A1213 - m.m01 * A0213 + m.m02 * A0113 ),
m33 = det * ( m.m00 * A1212 - m.m01 * A0212 + m.m02 * A0112 ),
};
私はコードを書きませんが、私のプログラムは書きました。N行列の行列式と逆行列を計算するプログラムを作成するための小さなプログラムを作成しました。
過去に5x5行列を逆にするコードが必要だったので、これを行いましたが、地球上の誰もこれを行っていないので、作成しました。
編集:マトリックスのレイアウトは行ごとです(つまりm01
、最初の行と2番目の列にあります)。また、言語はC#ですが、Cに簡単に変換できるはずです。
多くの関数を備えたC ++マトリックスライブラリが必要な場合は、Eigenライブラリをご覧ください-http://eigen.tuxfamily.org
MESA実装を「ロールアップ」しました(実際に機能することを確認するために、いくつかの単体テストも作成しました)。
ここに:
float invf(int i,int j,const float* m){
int o = 2+(j-i);
i += 4+o;
j += 4-o;
#define e(a,b) m[ ((j+b)%4)*4 + ((i+a)%4) ]
float inv =
+ e(+1,-1)*e(+0,+0)*e(-1,+1)
+ e(+1,+1)*e(+0,-1)*e(-1,+0)
+ e(-1,-1)*e(+1,+0)*e(+0,+1)
- e(-1,-1)*e(+0,+0)*e(+1,+1)
- e(-1,+1)*e(+0,-1)*e(+1,+0)
- e(+1,-1)*e(-1,+0)*e(+0,+1);
return (o%2)?inv : -inv;
#undef e
}
bool inverseMatrix4x4(const float *m, float *out)
{
float inv[16];
for(int i=0;i<4;i++)
for(int j=0;j<4;j++)
inv[j*4+i] = invf(i,j,m);
double D = 0;
for(int k=0;k<4;k++) D += m[k] * inv[k*4];
if (D == 0) return false;
D = 1.0 / D;
for (int i = 0; i < 16; i++)
out[i] = inv[i] * D;
return true;
}
私はこれについて少し書き、私のブログに正/負の要因のパターンを表示します。
@LiraNunaが示唆しているように、多くのプラットフォームでは、このようなルーチンのハードウェアアクセラレーションバージョンが利用できるため、読みやすく簡潔な「バックアップバージョン」が用意されています。
注:これは、MESAの実装よりも3.5倍遅くまたは悪くなる可能性があります。ファクターのパターンをシフトして、いくつかの追加などを削除することができますが、読みやすさが失われ、それでもあまり高速ではありません。
GNU Scientific Libraryを使用するか、その中のコードを調べることができます。
編集:あなたは線形代数セクションが欲しいようです。
@shooshに触発されてMESAの実装を確認したところ、最近のmesaリリースでは行列の反転がまったく異なって見えることがわかりました。それらは良い改善だと思います。Mesa-17.3.9のマトリックス反転コードは次のとおりです。
/* Returns true for success, false for failure (singular matrix) */
bool DirectVolumeRenderer::_mesa_invert_matrix_general( GLfloat out[16], const GLfloat in[16] )
{
/**
* References an element of 4x4 matrix.
* Calculate the linear storage index of the element and references it.
*/
#define MAT(m,r,c) (m)[(c)*4+(r)]
/**
* Swaps the values of two floating point variables.
*/
#define SWAP_ROWS(a, b) { GLfloat *_tmp = a; (a)=(b); (b)=_tmp; }
const GLfloat *m = in;
GLfloat wtmp[4][8];
GLfloat m0, m1, m2, m3, s;
GLfloat *r0, *r1, *r2, *r3;
r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];
r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1),
r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3),
r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0,
r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1),
r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3),
r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0,
r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1),
r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3),
r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0,
r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1),
r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3),
r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0;
/* choose pivot - or die */
if (fabsf(r3[0])>fabsf(r2[0])) SWAP_ROWS(r3, r2);
if (fabsf(r2[0])>fabsf(r1[0])) SWAP_ROWS(r2, r1);
if (fabsf(r1[0])>fabsf(r0[0])) SWAP_ROWS(r1, r0);
if (0.0F == r0[0])
return false;
/* eliminate first variable */
m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0];
s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s;
s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s;
s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s;
s = r0[4];
if (s != 0.0F) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; }
s = r0[5];
if (s != 0.0F) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; }
s = r0[6];
if (s != 0.0F) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; }
s = r0[7];
if (s != 0.0F) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; }
/* choose pivot - or die */
if (fabsf(r3[1])>fabsf(r2[1])) SWAP_ROWS(r3, r2);
if (fabsf(r2[1])>fabsf(r1[1])) SWAP_ROWS(r2, r1);
if (0.0F == r1[1])
return false;
/* eliminate second variable */
m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1];
r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2];
r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3];
s = r1[4]; if (0.0F != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; }
s = r1[5]; if (0.0F != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; }
s = r1[6]; if (0.0F != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; }
s = r1[7]; if (0.0F != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; }
/* choose pivot - or die */
if (fabsf(r3[2])>fabsf(r2[2])) SWAP_ROWS(r3, r2);
if (0.0F == r2[2])
return false;
/* eliminate third variable */
m3 = r3[2]/r2[2];
r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6],
r3[7] -= m3 * r2[7];
/* last check */
if (0.0F == r3[3])
return false;
s = 1.0F/r3[3]; /* now back substitute row 3 */
r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s;
m2 = r2[3]; /* now back substitute row 2 */
s = 1.0F/r2[2];
r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
m1 = r1[3];
r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
m0 = r0[3];
r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;
m1 = r1[2]; /* now back substitute row 1 */
s = 1.0F/r1[1];
r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
m0 = r0[2];
r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;
m0 = r0[1]; /* now back substitute row 0 */
s = 1.0F/r0[0];
r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);
MAT(out,0,0) = r0[4]; MAT(out,0,1) = r0[5],
MAT(out,0,2) = r0[6]; MAT(out,0,3) = r0[7],
MAT(out,1,0) = r1[4]; MAT(out,1,1) = r1[5],
MAT(out,1,2) = r1[6]; MAT(out,1,3) = r1[7],
MAT(out,2,0) = r2[4]; MAT(out,2,1) = r2[5],
MAT(out,2,2) = r2[6]; MAT(out,2,3) = r2[7],
MAT(out,3,0) = r3[4]; MAT(out,3,1) = r3[5],
MAT(out,3,2) = r3[6]; MAT(out,3,3) = r3[7];
#undef SWAP_ROWS
#undef MAT
return true;
}
注:このコードは、mesaコードベースにありますmesa-17.3.9/src/mesa/math/m_matrix.c
。
これは@willnodeの答えのC ++バージョンです
static inline void InvertMatrix4(const Matrix& m, Matrix& im, double& det)
{
double A2323 = m(2, 2) * m(3, 3) - m(2, 3) * m(3, 2);
double A1323 = m(2, 1) * m(3, 3) - m(2, 3) * m(3, 1);
double A1223 = m(2, 1) * m(3, 2) - m(2, 2) * m(3, 1);
double A0323 = m(2, 0) * m(3, 3) - m(2, 3) * m(3, 0);
double A0223 = m(2, 0) * m(3, 2) - m(2, 2) * m(3, 0);
double A0123 = m(2, 0) * m(3, 1) - m(2, 1) * m(3, 0);
double A2313 = m(1, 2) * m(3, 3) - m(1, 3) * m(3, 2);
double A1313 = m(1, 1) * m(3, 3) - m(1, 3) * m(3, 1);
double A1213 = m(1, 1) * m(3, 2) - m(1, 2) * m(3, 1);
double A2312 = m(1, 2) * m(2, 3) - m(1, 3) * m(2, 2);
double A1312 = m(1, 1) * m(2, 3) - m(1, 3) * m(2, 1);
double A1212 = m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1);
double A0313 = m(1, 0) * m(3, 3) - m(1, 3) * m(3, 0);
double A0213 = m(1, 0) * m(3, 2) - m(1, 2) * m(3, 0);
double A0312 = m(1, 0) * m(2, 3) - m(1, 3) * m(2, 0);
double A0212 = m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0);
double A0113 = m(1, 0) * m(3, 1) - m(1, 1) * m(3, 0);
double A0112 = m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0);
det = m(0, 0) * ( m(1, 1) * A2323 - m(1, 2) * A1323 + m(1, 3) * A1223 )
- m(0, 1) * ( m(1, 0) * A2323 - m(1, 2) * A0323 + m(1, 3) * A0223 )
+ m(0, 2) * ( m(1, 0) * A1323 - m(1, 1) * A0323 + m(1, 3) * A0123 )
- m(0, 3) * ( m(1, 0) * A1223 - m(1, 1) * A0223 + m(1, 2) * A0123 );
det = 1 / det;
im(0, 0) = det * ( m(1, 1) * A2323 - m(1, 2) * A1323 + m(1, 3) * A1223 );
im(0, 1) = det * - ( m(0, 1) * A2323 - m(0, 2) * A1323 + m(0, 3) * A1223 );
im(0, 2) = det * ( m(0, 1) * A2313 - m(0, 2) * A1313 + m(0, 3) * A1213 );
im(0, 3) = det * - ( m(0, 1) * A2312 - m(0, 2) * A1312 + m(0, 3) * A1212 );
im(1, 0) = det * - ( m(1, 0) * A2323 - m(1, 2) * A0323 + m(1, 3) * A0223 );
im(1, 1) = det * ( m(0, 0) * A2323 - m(0, 2) * A0323 + m(0, 3) * A0223 );
im(1, 2) = det * - ( m(0, 0) * A2313 - m(0, 2) * A0313 + m(0, 3) * A0213 );
im(1, 3) = det * ( m(0, 0) * A2312 - m(0, 2) * A0312 + m(0, 3) * A0212 );
im(2, 0) = det * ( m(1, 0) * A1323 - m(1, 1) * A0323 + m(1, 3) * A0123 );
im(2, 1) = det * - ( m(0, 0) * A1323 - m(0, 1) * A0323 + m(0, 3) * A0123 );
im(2, 2) = det * ( m(0, 0) * A1313 - m(0, 1) * A0313 + m(0, 3) * A0113 );
im(2, 3) = det * - ( m(0, 0) * A1312 - m(0, 1) * A0312 + m(0, 3) * A0112 );
im(3, 0) = det * - ( m(1, 0) * A1223 - m(1, 1) * A0223 + m(1, 2) * A0123 );
im(3, 1) = det * ( m(0, 0) * A1223 - m(0, 1) * A0223 + m(0, 2) * A0123 );
im(3, 2) = det * - ( m(0, 0) * A1213 - m(0, 1) * A0213 + m(0, 2) * A0113 );
im(3, 3) = det * ( m(0, 0) * A1212 - m(0, 1) * A0212 + m(0, 2) * A0112 );
}
このブログによると、あなたはそれをより速くすることができます。
#define SUBP(i,j) input[i][j]
#define SUBQ(i,j) input[i][2+j]
#define SUBR(i,j) input[2+i][j]
#define SUBS(i,j) input[2+i][2+j]
#define OUTP(i,j) output[i][j]
#define OUTQ(i,j) output[i][2+j]
#define OUTR(i,j) output[2+i][j]
#define OUTS(i,j) output[2+i][2+j]
#define INVP(i,j) invP[i][j]
#define INVPQ(i,j) invPQ[i][j]
#define RINVP(i,j) RinvP[i][j]
#define INVPQ(i,j) invPQ[i][j]
#define RINVPQ(i,j) RinvPQ[i][j]
#define INVPQR(i,j) invPQR[i][j]
#define INVS(i,j) invS[i][j]
#define MULTI(MAT1, MAT2, MAT3) \
MAT3(0,0)=MAT1(0,0)*MAT2(0,0) + MAT1(0,1)*MAT2(1,0); \
MAT3(0,1)=MAT1(0,0)*MAT2(0,1) + MAT1(0,1)*MAT2(1,1); \
MAT3(1,0)=MAT1(1,0)*MAT2(0,0) + MAT1(1,1)*MAT2(1,0); \
MAT3(1,1)=MAT1(1,0)*MAT2(0,1) + MAT1(1,1)*MAT2(1,1);
#define INV(MAT1, MAT2) \
_det = 1.0 / (MAT1(0,0) * MAT1(1,1) - MAT1(0,1) * MAT1(1,0)); \
MAT2(0,0) = MAT1(1,1) * _det; \
MAT2(1,1) = MAT1(0,0) * _det; \
MAT2(0,1) = -MAT1(0,1) * _det; \
MAT2(1,0) = -MAT1(1,0) * _det; \
#define SUBTRACT(MAT1, MAT2, MAT3) \
MAT3(0,0)=MAT1(0,0) - MAT2(0,0); \
MAT3(0,1)=MAT1(0,1) - MAT2(0,1); \
MAT3(1,0)=MAT1(1,0) - MAT2(1,0); \
MAT3(1,1)=MAT1(1,1) - MAT2(1,1);
#define NEGATIVE(MAT) \
MAT(0,0)=-MAT(0,0); \
MAT(0,1)=-MAT(0,1); \
MAT(1,0)=-MAT(1,0); \
MAT(1,1)=-MAT(1,1);
void getInvertMatrix(complex<double> input[4][4], complex<double> output[4][4]) {
complex<double> _det;
complex<double> invP[2][2];
complex<double> invPQ[2][2];
complex<double> RinvP[2][2];
complex<double> RinvPQ[2][2];
complex<double> invPQR[2][2];
complex<double> invS[2][2];
INV(SUBP, INVP);
MULTI(SUBR, INVP, RINVP);
MULTI(INVP, SUBQ, INVPQ);
MULTI(RINVP, SUBQ, RINVPQ);
SUBTRACT(SUBS, RINVPQ, INVS);
INV(INVS, OUTS);
NEGATIVE(OUTS);
MULTI(OUTS, RINVP, OUTR);
MULTI(INVPQ, OUTS, OUTQ);
MULTI(INVPQ, OUTR, INVPQR);
SUBTRACT(INVP, INVPQR, OUTP);
}
Pは反転できない可能性があるため、これは完全な実装ではありませんが、このコードをMESA実装と組み合わせて、パフォーマンスを向上させることができます。
4x4行列の逆行列を計算する場合は、OpenGL Mathematics(GLM)のようなライブラリを使用することをお勧めします。
とにかく、最初からそれを行うことができます。次の実装はの実装に似ていますがglm::inverse
、それほど高度に最適化されていません。
bool InverseMat44( const GLfloat m[16], GLfloat invOut[16] )
{
float inv[16], det;
int i;
inv[0] = m[5] * m[10] * m[15] - m[5] * m[11] * m[14] - m[9] * m[6] * m[15] + m[9] * m[7] * m[14] + m[13] * m[6] * m[11] - m[13] * m[7] * m[10];
inv[4] = -m[4] * m[10] * m[15] + m[4] * m[11] * m[14] + m[8] * m[6] * m[15] - m[8] * m[7] * m[14] - m[12] * m[6] * m[11] + m[12] * m[7] * m[10];
inv[8] = m[4] * m[9] * m[15] - m[4] * m[11] * m[13] - m[8] * m[5] * m[15] + m[8] * m[7] * m[13] + m[12] * m[5] * m[11] - m[12] * m[7] * m[9];
inv[12] = -m[4] * m[9] * m[14] + m[4] * m[10] * m[13] + m[8] * m[5] * m[14] - m[8] * m[6] * m[13] - m[12] * m[5] * m[10] + m[12] * m[6] * m[9];
inv[1] = -m[1] * m[10] * m[15] + m[1] * m[11] * m[14] + m[9] * m[2] * m[15] - m[9] * m[3] * m[14] - m[13] * m[2] * m[11] + m[13] * m[3] * m[10];
inv[5] = m[0] * m[10] * m[15] - m[0] * m[11] * m[14] - m[8] * m[2] * m[15] + m[8] * m[3] * m[14] + m[12] * m[2] * m[11] - m[12] * m[3] * m[10];
inv[9] = -m[0] * m[9] * m[15] + m[0] * m[11] * m[13] + m[8] * m[1] * m[15] - m[8] * m[3] * m[13] - m[12] * m[1] * m[11] + m[12] * m[3] * m[9];
inv[13] = m[0] * m[9] * m[14] - m[0] * m[10] * m[13] - m[8] * m[1] * m[14] + m[8] * m[2] * m[13] + m[12] * m[1] * m[10] - m[12] * m[2] * m[9];
inv[2] = m[1] * m[6] * m[15] - m[1] * m[7] * m[14] - m[5] * m[2] * m[15] + m[5] * m[3] * m[14] + m[13] * m[2] * m[7] - m[13] * m[3] * m[6];
inv[6] = -m[0] * m[6] * m[15] + m[0] * m[7] * m[14] + m[4] * m[2] * m[15] - m[4] * m[3] * m[14] - m[12] * m[2] * m[7] + m[12] * m[3] * m[6];
inv[10] = m[0] * m[5] * m[15] - m[0] * m[7] * m[13] - m[4] * m[1] * m[15] + m[4] * m[3] * m[13] + m[12] * m[1] * m[7] - m[12] * m[3] * m[5];
inv[14] = -m[0] * m[5] * m[14] + m[0] * m[6] * m[13] + m[4] * m[1] * m[14] - m[4] * m[2] * m[13] - m[12] * m[1] * m[6] + m[12] * m[2] * m[5];
inv[3] = -m[1] * m[6] * m[11] + m[1] * m[7] * m[10] + m[5] * m[2] * m[11] - m[5] * m[3] * m[10] - m[9] * m[2] * m[7] + m[9] * m[3] * m[6];
inv[7] = m[0] * m[6] * m[11] - m[0] * m[7] * m[10] - m[4] * m[2] * m[11] + m[4] * m[3] * m[10] + m[8] * m[2] * m[7] - m[8] * m[3] * m[6];
inv[11] = -m[0] * m[5] * m[11] + m[0] * m[7] * m[9] + m[4] * m[1] * m[11] - m[4] * m[3] * m[9] - m[8] * m[1] * m[7] + m[8] * m[3] * m[5];
inv[15] = m[0] * m[5] * m[10] - m[0] * m[6] * m[9] - m[4] * m[1] * m[10] + m[4] * m[2] * m[9] + m[8] * m[1] * m[6] - m[8] * m[2] * m[5];
det = m[0] * inv[0] + m[1] * inv[4] + m[2] * inv[8] + m[3] * inv[12];
if (det == 0) return false;
det = 1.0 / det;
for (i = 0; i < 16; i++)
invOut[i] = inv[i] * det;
return true;
}