DEM作成のためにIDW対Kriging Interpolationを選択しますか?


23

私は、約10m離れた非常に規則的な間隔のポイントデータを使用してDEMを作成しようとしています。私が内挿しているエリアは、多くの平坦な駐車場とサッカー場がある教育施設ですが、駐車場に停滞することが多いかなり急な丘がまだあります。これらの既知のプラトーのため、スプライン法は除外しました。ただし、IDWとKrigingのどちらの方法を使用するかはまだわかりません。両方を試してみても大きな違いは見られませんが、少し調査してもまだ決定していません。

誰かがこれを私のために解決するための知恵の言葉を持っていますか?


クリギングが適切な選択である場合、「条件付きDMEモデリング」として何かが必要だと思います...問題で直面しているさまざまなエラーの原因を考慮するため。
ピータークラウス14年

2
GIS.SEへようこそ。通常のように、現場調査員がポイントを賢く選択しましたか?すなわち、彼らは斜面の休憩でポイントを選択しましたか?また、DEMの目的は何ですか?輪郭、ボリューム?このような問題は、アドバイスに影響を与える可能性があります。
マーティンF 14年

3
クリギングはIDWよりもうまく動作するはずですが、この状況では多くの専門知識と注意が必要です。なぜなら、地形の説明は空間相関が定常的ではないことを示しているためです。(この仮定がないと、有効なバリオグラムを推定することさえできません。)オプションがある場合は、TINの作成を検討できます。
whuber

TINに+1を付けた場合、実際に考慮する必要があります。
radouxju

回答:


37

どちらの形式も、トブラスの地理の第一法則に依存しています。近いものは、離れているものよりも関連性があります。

IDWは、2つの手法のうちシンプルです。未知の点と既知の点の間の距離の関数として決定される既知のz値と重みを使用します。そのため、IDWでは、遠くにあるポイントは、近くにあるポイントよりもはるかに影響が小さくなります。逆距離の重みの効果は、逆距離を上げるべき乗数を変更することで、ユーザーが決定できることがよくあります。

検索半径を使用したIDW

この図に見られるように、検索半径を使用して、IDWが考慮するデータポイント(z値)の制限を決定できます。

IDWは、統計モデルが使用されていないという点でクリギングと異なります。考慮される空間的自己相関の決定はありません(つまり、相関変数がさまざまな距離にある方法は決定されません)。IDWでは、既知のz値と距離の重みのみが未知の領域を決定するために使用されます。

IDWには、定義が容易であるため、結果を理解しやすいという利点があります。結果がどのように到達したかわからない場合は、クリギングを使用することはお勧めできません。クリギングは、外れ値がある場合にも苦しみます(説明については、こちらを参照してください)。

ESRIの状態

クリギングは、データに空間的に相関する距離または方向のバイアスがあることがわかっている場合に最も適しています。土壌科学および地質学でよく使用されます。

クリギングは、バリオグラムを使用して、段階的な距離にあるポイント間の空間的自己相関を計算する統計的手法です(Statios Variogram IntroductionWashington Intro to Variogramsを参照してください)。この空間的自己相関の計算を使用して、さまざまな距離に適用される重みを決定します。空間的自己相関は、ポイント間の平方差を取ることによって決定されます。クリギングを明確にすることは、次の点でIDWと似ています。

IDW補間と同様に、クリギングは周囲の測定値から重みを形成して、未測定の位置を予測します。IDW補間の場合と同様に、未測定の場所に最も近い測定値が最も影響を及ぼします。(ソース

しかし、重みはセミバリオグラムによって決定されるので、異なります。

バリオグラム方程式

「nは、距離hに対して分離された属性zの値の観測値のサンプルポイントのペアの数です」(Burrough and McDonnell、2004:134)。

セミバリオグラム

クリギングにはさまざまなニッチタイプがあります

参考文献:

  1. IDWの仕組み
  2. クリングの仕組み
  3. クリギングの使用方法
  4. 補間のタイプ
弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.