私は次の関数を持っています:
その補関数は次のようになりました:
私はそれを示さなければなり ません:が、どうすればいいのかわかりません。
互いに打ち消し合うものは何もないようです。
編集
示唆されたように、私は今、DeMorganの定理を使用して、これを見つけました:
しかし、f + f ′ = 1の実現に私を近づけるものは何もないように思えます。
私は次の関数を持っています:
その補関数は次のようになりました:
私はそれを示さなければなり ません:が、どうすればいいのかわかりません。
互いに打ち消し合うものは何もないようです。
編集
示唆されたように、私は今、DeMorganの定理を使用して、これを見つけました:
しかし、f + f ′ = 1の実現に私を近づけるものは何もないように思えます。
回答:
カールがきちんと尋ねたので。開始点:
Take the following steps with :
The point is, it really doesn't matter what the function actually is. The key fact is that its output is a single binary value.
It is a fundamental fact in Boolean algebra that the complement of a binary value is true whenever the value itself is false. This is known as the law of excluded middle. So ORing a value with its complement is always true, and ANDing a value with its complement is always false.
It's nice that you were able to derive the specific function , but that's actually irrelevant to the actual question!
All previous answers are correct, and very much in depth. But a simpler way to approach this might be to remember that in boolean algebra, all values must be either 0 or 1.
So... either F is 1, then F' is 0, or the other way around: F is 0 and F' is 1. If you then apply the boolean OR-function: F + F', you will always have one of both terms 1, so the result will always be 1.
私の答えは、デイブツイードの答えと似ています。つまり、より正式なレベルに置いています。明らかに後で答えましたが、誰かがこのアプローチを面白いと思うかもしれないので、それを投稿することにしました。
for all .
We have that and consider the following two sets of Boolean values for the -dimensional Boolean vector
All good answers that provide the necessary justification in one way or the other. Since it is a tautology, it's hard to create a proof that doesn't just result in "it is what it is!". Perhaps this method help tackle it from yet another, broader angle:
Expand both statements to include their redundant cases, and the remove the repeated cases:
and
I've kept the terms in consistent order to make the derivation more obvious, but they could be written alphabetically to be clearer. In any case, the point is that ORs seven 4-bit cases, and ORs nine, distinct 4-bit cases. Together they OR all sixteen 4-bit cases, so reduce to .
F + F' = 1 means that you have to show that no matter the state of the 4 inputs, OR'ing the result of those 2 always result in 1,
A few minutes in excel shows it is indeed the case. You can use "NOT()" to invert between 0 and 1 in excel.
F = W * X + Y * Z
F' = W' * Y' + W' * Z' + X' * Y' + X' * Z'
As to why this is the case, If you want F to be false, e.g. setting W and Y low, you just made F' true. If you make X and Z low, you also made F" true, same for swapping there pairs.