タグ付けされた質問 「scoring」

3
数学の畳み込みとCNNの関係
畳み込みの説明を読んである程度理解しました。誰かがこの操作がたたみ込みニューラルネットのたたみ込みにどのように関連しているかを理解するのを手伝ってくれませんか?gウェイトをかけるフィルターのような機能ですか?
10 machine-learning  neural-network  deep-learning  cnn  convolution  machine-learning  ensemble-modeling  machine-learning  classification  data-mining  clustering  machine-learning  feature-selection  convnet  pandas  graphs  ipython  machine-learning  apache-spark  multiclass-classification  naive-bayes-classifier  multilabel-classification  machine-learning  data-mining  dataset  data-cleaning  data  machine-learning  data-mining  statistics  correlation  machine-learning  data-mining  dataset  data-cleaning  data  beginner  career  python  r  visualization  machine-learning  data-mining  nlp  stanford-nlp  dataset  linear-regression  time-series  correlation  anomaly-detection  ensemble-modeling  data-mining  machine-learning  python  data-mining  recommender-system  machine-learning  cross-validation  model-selection  scoring  prediction  sequential-pattern-mining  categorical-data  python  tensorflow  image-recognition  statistics  machine-learning  data-mining  predictive-modeling  data-cleaning  preprocessing  classification  deep-learning  tensorflow  machine-learning  algorithms  data  keras  categorical-data  reference-request  loss-function  classification  logistic-regression  apache-spark  prediction  naive-bayes-classifier  beginner  nlp  word2vec  vector-space-models  scikit-learn  decision-trees  data  programming 

2
Fメジャーが分類タスクに推奨されるのはなぜですか?
Gメジャー(またはFowlkes–Mallowsインデックス)が(教師なし)クラスタータスクに一般的に使用されるのに対し、Fメジャーは通常(教師付き)分類タスクに使用されるのはなぜですか? Fメジャーは、精度と再現率の調和平均です。 Gメジャー(またはFowlkes–Mallowsインデックス)は、精度と再現率の幾何平均です。 以下は、異なる平均のプロットです。 = 2 ⋅ P R E 、C 、I S I O N ⋅ R E C A L LP R E 、C 、I S I O N + R E C A L L=2⋅prec私s私oん⋅recallprec私s私oん+recall= 2\cdot\frac{precision\cdot recall}{precision + recall} = P R E 、C 、I S I …

2
精度とNPVではなく、精度と再現率がF1スコアで使用されるのはなぜですか?
バイナリ分類の問題では、F1スコアがパフォーマンスの指標としてよく使用されるようです。私が理解している限り、アイデアは精度と再現率の間の最良のトレードオフを見つけることです。F1スコアの式は、精度と再現率が対称的です。しかし、(そして、それが私を悩ませていることですが)精度と再現率の間には非対称性があります。再現率は事前確率に依存しない分類子のプロパティですが、精度は事前確率に依存する量です。 精度と再現率の組み合わせの何がそんなに特別なのか誰にも教えてもらえますか?精度(ポジティブ予測値)とネガティブ予測値を使用しないのはなぜですか?
弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.