タグ付けされた質問 「neural-network」

人工ニューラルネットワーク(ANN)は、「ニューロン」(生物学的ニューロンの特性を模倣するプログラミング構造)で構成されています。ニューロン間の一連の重み付けされた接続により、ネットワーク設計者が実際のシステムのモデルを持たなくても、情報がネットワークを介して伝播し、人工知能の問題を解決できます。

4
名前付きエンティティの認識のためのWord2Vec
Googleのword2vec実装を使用して、名前付きエンティティ認識システムを構築したいと考えています。構造を逆伝播する再帰的ニューラルネットは、名前付きエンティティ認識タスクに適していると聞きましたが、そのタイプのモデルに適した実装または適切なチュートリアルを見つけることができませんでした。非定型コーパスを使用しているため、NLTKなどの標準NERツールのパフォーマンスは非常に低く、独自のシステムをトレーニングする必要があるようです。 要するに、この種の問題に利用できるリソースは何ですか?利用可能な標準的な再帰ニューラルネットの実装はありますか?

3
NLPと機械学習のコミュニティがディープラーニングに関心を持っているのはなぜですか?
このトピックに関する質問がいくつかありますので、お役に立てば幸いです。私はディープラーニングの分野で初めての経験がありますが、いくつかのチュートリアルを行いましたが、概念を互いに関連付けたり区別したりすることはできません。

6
たたみ込みニューラルネットワークが機能する理由
なぜ畳み込みニューラルネットワークがまだよく理解されていないのかと言う人をよく耳にします。畳み込みニューラルネットワークが、層を上るにつれて常に洗練された機能を学習することになります。それらがそのような機能のスタックを作成した原因は何ですか?これは他のタイプのディープニューラルネットワークにも当てはまりますか?

2
PASCAL VOC Challengeの検出タスクのmAPを計算する方法は?
Pascal VOCリーダーボードの検出タスクのmAP(平均精度)の計算方法は?http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=4 そこに-11ページで:http : //homepages.inf.ed.ac.uk/ckiw/postscript/ijcv_voc09.pdf 平均精度(AP)。VOC2007チャレンジでは、分類された検出と検出の両方を評価するために、補間された平均精度(Salton and Mcgill 1986)が使用されました。特定のタスクおよびクラスについて、精度/リコール曲線はメソッドのランク付けされた出力から計算されます。リコールは、特定のランクよりも上位にランク付けされたすべての肯定的な例の割合として定義されます。精度は、そのランクより上のすべての例のうち、ポジティブクラスからの割合です。APは精度/リコール曲線の形状を要約し、11個の等間隔のリコールレベル[0,0.1、...、1]のセットでの平均精度として定義されます。 AP = 1/11 ∑ r∈{0,0.1,...,1} pinterp(r) 各リコールレベルrの精度は、対応するリコールがrを超えるメソッドに対して測定された最大精度を取得することにより補間されますpinterp(r) = max p(r˜)。ここで、p(r〜)はリコール〜rで測定された精度です。 地図について:http://0agr.ru/wiki/index.php/Precision_and_Recall#Average_Precision それは次のことを意味します: PrecisionとRecallを計算します。 A)多くの異なるものIoU について、> {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}真/偽の正/負の値を計算します ここでTrue positive = Number_of_detection with IoU > {0, 0.1,..., 1}、https://datascience.stackexchange.com/a/16813/37736で述べたように、次に計算します: Precision = True positive / …


1
ミニバッチのサイズを選択するためのルールはありますか?
ニューラルネットワークをトレーニングする場合、1つのハイパーパラメーターはミニバッチのサイズです。一般的な選択肢は、ミニバッチあたり32、64、128個の要素です。 ミニバッチの大きさのルール/ガイドラインはありますか?トレーニングへの影響を調査する出版物はありますか?

3
多重出力回帰のためのニューラルネットワーク
34の入力列と8つの出力列を含むデータセットがあります。 この問題を解決する1つの方法は、34の入力を取得し、各出力列に対して個別の回帰モデルを構築することです。 特にニューラルネットワークを使用して、この問題を1つのモデルだけで解決できるかどうか疑問に思っています。 多層パーセプトロンを使用しましたが、線形回帰のように複数のモデルが必要です。Sequence to Sequenceは実行可能なオプションですか? TensorFlowを使用しています。コードはありますが、多層パーセプトロン理論の観点から見落としていることを理解することがより重要だと思います。 MLPでは、1つの出力ノードがある場合、1つの出力を提供することを理解しています。10個の出力ノードがある場合、それはマルチクラスの問題です。10個の出力の中から最も確率の高いクラスを選択します。しかし、私の場合、同じ入力に対して8つの出力があることは確かです。 たとえば、入力のセットに対して、何か(X、Y、Z)の3D座標を取得するとしましょう。同様に、入力= {1,10,5,7}出力= {1,2,1}。したがって、同じ入力{1,10,5,7}に対して、X値Y値とZのモデルを作成する必要があります。1つの解決策は、MLPを使用して3つの異なるモデルを作成することです。しかし、私は1つのモデルを持つことができるかどうかを見たいです。そこで、seq2seqの使用を考えました。エンコーダは一連の入力を受け取り、デコーダは一連の出力を提供するためです。しかし、テンソルフローのseq2seqはfloat値を処理できないようです。私はこれについて間違っている可能性があります。

4
勾配降下は常に最適に収束しますか?
勾配降下が最小に収束しないシナリオがあるかどうか疑問に思っています。 勾配降下が常にグローバルな最適値に収束することが保証されているわけではないことを認識しています。また、たとえば、ステップサイズが大きすぎると、最適値から逸脱する可能性があることも認識しています。しかし、ある最適から逸脱すると、最終的には別の最適に移行するように思えます。 したがって、勾配降下はローカルまたはグローバル最適に収束することが保証されます。そうですか?そうでない場合、大まかな反例を示してください。


3
ディープラーニングライブラリを使用したテキストからのキーワード/フレーズ抽出
おそらくこれは広すぎるかもしれませんが、テキスト要約タスクでディープラーニングを使用する方法に関するリファレンスを探しています。 標準の単語頻度アプローチと文のランク付けを使用してテキストの要約を既に実装していますが、このタスクにディープラーニングテクニックを使用する可能性を調査したいと思います。また、センチメント分析にConvolutional Neural Networks(CNN)を使用してwildml.comで提供されているいくつかの実装も行っています。テキストの要約とキーワード抽出にTensorFlowやTheanoなどのライブラリをどのように使用できるか知りたいのですが。ニューラルネットの実験を始めてから約1週間が経過しました。これらのライブラリのパフォーマンスが、この問題に対する以前のアプローチと比較してどうなるか、とても楽しみです。 これらのフレームワークを使用したテキスト要約に関連する興味深い論文とgithubプロジェクトを特に探しています。誰かが私にいくつかの参照を提供できますか?

2
Sparse_categorical_crossentropy vs categorical_crossentropy(keras、精度)
どちらが正確性のために優れていますか、それとも同じですか?もちろん、categorical_crossentropyを使用する場合は1つのホットエンコーディングを使用し、sparse_categorical_crossentropyを使用する場合は通常の整数としてエンコードします。また、一方が他方より優れているのはいつですか?

4
ケラスモデルの精度、F1、精度、再現率を取得する方法は?
バイナリKerasClassifierモデルの精度、再現率、F1スコアを計算したいのですが、解決策が見つかりません。 これが私の実際のコードです: # Split dataset in train and test data X_train, X_test, Y_train, Y_test = train_test_split(normalized_X, Y, test_size=0.3, random_state=seed) # Build the model model = Sequential() model.add(Dense(23, input_dim=45, kernel_initializer='normal', activation='relu')) model.add(Dense(1, kernel_initializer='normal', activation='sigmoid')) # Compile model model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) tensorboard = TensorBoard(log_dir="logs/{}".format(time.time())) time_callback = TimeHistory() # Fit the model history …

2
ReLUがアクティベーション機能として使用されるのはなぜですか?
アクティベーション関数はw * x + b、ニューラルネットワークのタイプの線形出力に非線形性を導入するために使用されます。 シグモイドのような活性化機能について、私は直感的に理解することができます。 バックプロパゲーション中に死んだニューロンを回避するReLUの利点を理解しています。しかし、出力が線形の場合にReLUがアクティベーション関数として使用される理由を理解できませんか? アクティベーション関数であることのすべてのポイントは、非線形性を導入しない場合、無効になりませんか?

4
「LSTMセルのユニット数」の意味は何ですか?
Tensorflowコードから:Tensorflow。RnnCell。 num_units: int, The number of units in the LSTM cell. これが何を意味するのか理解できません。LSTMセルの単位は何ですか。ゲートを入力、出力、および忘れますか?これは、「Deep LSTMの再帰投影レイヤーのユニット数」を意味しますか。では、なぜこれが「LSTMセルのユニット数」と呼ばれるのですか?LSTMセルとは何ですか?VS VS LSTMブロックとの違いは何ですか?セルでない場合の最小LSTMユニットとは何ですか?

1
ニューラルネットワークアーキテクチャの決定方法
ニューラルネットワークアーキテクチャを構築するときに、非表示層にいくつのノードを配置し、どのように非表示層を配置するかをどのように決定する必要があるのか​​と思いました。 入力層と出力層はトレーニングセットに依存することを理解していますが、一般に隠れ層と全体的なアーキテクチャをどのように決定するのですか?

弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.