タグ付けされた質問 「data-science-model」

1
1つのホットベクトルを数値属性でスケーリングする必要があります
カテゴリ属性と数値属性の組み合わせを持つ場合、通常、カテゴリ属性を1つのホットベクトルに変換します。私の質問は、それらのベクトルをそのままにして、標準化/正規化を通じて数値属性をスケーリングするのですか、それとも数値属性とともに1つのホットベクトルをスケーリングするのですか?

3
Python用のすぐに使える優れた言語モデルはありますか?
私はアプリケーションのプロトタイプを作成していますが、生成されたいくつかの文の複雑さを計算するための言語モデルが必要です。 すぐに使用できるPythonのトレーニング済み言語モデルはありますか?のような単純なもの model = LanguageModel('en') p1 = model.perplexity('This is a well constructed sentence') p2 = model.perplexity('Bunny lamp robert junior pancake') assert p1 < p2 一部のフレームワークを確認しましたが、必要なものが見つかりませんでした。私は次のようなものを使用できることを知っています: from nltk.model.ngram import NgramModel lm = NgramModel(3, brown.words(categories='news')) これはブラウンコーパスの優れたチューリング確率分布を使用していますが、1bワードデータセットなどの大きなデータセットで巧妙に作成されたモデルを探していました。一般的なドメイン(ニュースだけでなく)の結果を実際に信頼できるもの
11 python  nlp  language-model  r  statistics  linear-regression  machine-learning  classification  random-forest  xgboost  python  sampling  data-mining  orange  predictive-modeling  recommender-system  statistics  dimensionality-reduction  pca  machine-learning  python  deep-learning  keras  reinforcement-learning  neural-network  image-classification  r  dplyr  deep-learning  keras  tensorflow  lstm  dropout  machine-learning  sampling  categorical-data  data-imputation  machine-learning  deep-learning  machine-learning-model  dropout  deep-network  pandas  data-cleaning  data-science-model  aggregation  python  neural-network  reinforcement-learning  policy-gradients  r  dataframe  dataset  statistics  prediction  forecasting  r  k-means  python  scikit-learn  labels  python  orange  cloud-computing  machine-learning  neural-network  deep-learning  rnn  recurrent-neural-net  logistic-regression  missing-data  deep-learning  autoencoder  apache-hadoop  time-series  data  preprocessing  classification  predictive-modeling  time-series  machine-learning  python  feature-selection  autoencoder  deep-learning  keras  tensorflow  lstm  word-embeddings  predictive-modeling  prediction  machine-learning-model  machine-learning  classification  binary  theory  machine-learning  neural-network  time-series  lstm  rnn  neural-network  deep-learning  keras  tensorflow  convnet  computer-vision 


2
適切なMLアプローチの選択についてコンセンサスはありますか?
私は現在データサイエンスを勉強しており、目まぐるしく変化するさまざまな基本的な回帰/分類手法(線形、ロジスティック、ツリー、スプライン、ANN、SVM、MARSなど...)とさまざまな方法を教えられています追加のツール(ブートストラップ、ブースティング、バギング、アンサンブル、リッジ/ラッソ、CVなど)。技術にはコンテキストが与えられる場合があります(例:小さい/大きいデータセットに適している、少数/多数の予測子に適しているなど)が、ほとんどの場合、回帰または分類の問題にはオプションの目まいがする配列が存在するから選択します。 今すぐデータサイエンスの仕事を始めて、モデリングの問題が発生した場合、基本的な構成で知っているすべての手法を試して、交差検証を使用して評価し、最良のものを選択することほどよいことはないと思います。しかし、これにはそれ以上のものがあるに違いありません。 私は、経験豊富なデータサイエンティストがテクニックのカタログをよく知っていて、精神的なフローチャートに従って、すべてのテクニックを無意識に試すのではなく、どのテクニックを試すかを決定すると思います。私はこのフローチャートがa)関数の関数であると想像します。b)変数タイプ。c)考えられる関係(線形/非線形)に関するドメイン知識。d)データセットのサイズ。e)計算時間などに関する制約。 手法を選択するために、従うべき従来のフローチャートに同意したものはありますか?それとも、「多くのことを試して、クロスバリデーションなど、目的のメジャーで最も効果的なものを確認する」ということになるのでしょうか。

2
実際の機械学習プロダクションシステムはどのように実行されますか?
親愛なる機械学習/ AIコミュニティ、 私は、オープンなオンラインデータセットと、プロジェクト用にローカルで構築されたいくつかのPOCに取り組んできた、新進気鋭の機械学習者です。再トレーニングを回避するために、いくつかのモデルを構築し、ピクルスオブジェクトに変換しました。 そして、この質問はいつも私を困惑させます。実際の本番システムはMLアルゴリズムでどのように機能しますか? たとえば、MLアルゴリズムを数百万のデータでトレーニングし、それを本番システムに移動するか、サーバーでホストしたいとします。現実の世界では、それらは漬物オブジェクトに変換されますか?もしそうなら、それは巨大な漬物ファイルになるでしょう、そうではありません。ローカルでトレーニングし、50000行のデータ自体に変換したものは、そのピクルされたオブジェクトのためにディスク上で300 Mbのスペースを使用しました。私はそうは思わないので、これは正しいアプローチです。 では、MLアルゴリズムが受信データを再トレーニングして予測を開始しないようにするには、どうすればよいでしょうか。また、継続的なオンライン学習者として実際にMLアルゴリズムを作成する方法を教えてください。たとえば、画像分類子を作成し、入力画像の予測を開始しました。しかし、以前にトレーニングしたデータセットに着信オンライン画像を追加して、アルゴリズムを再度トレーニングしたいと思います。すべてのデータについてではなく、毎日、その日に受信したすべてのデータを組み合わせて、以前にトレーニングした分類子が実際の値で予測した新しく100枚の画像で再トレーニングしたい場合があります。そして、この再トレーニングは計算リソースとデータに基づいて時間がかかる可能性があるため、このアプローチは、以前にトレーニングされたアルゴリズムに影響を与えて、着信データの予測を停止するべきではありません。 私は多くの記事をGoogleで読みましたが、上記の質問を見つけたり理解したりできませんでした。そして、これは私を毎日困惑させています。本番システムでも手動による介入が必要ですか?それとも自動化されたアプローチがありますか? 上記の質問へのリードまたは回答は非常に役立ち、高く評価されます。私の質問が意味をなさない、または理解できない場合はお知らせください。 これは私が探しているプロジェクト中心ではありません。実際のプロダクションMLシステムの例の単なる一般的なケース。 前もって感謝します!
弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.