データセットの異なる要素間の類似性を見つける方法


8

前書き

さまざまな人々のさまざまな観察のデータセットがあり、他の人に最も近い人を知るために人々をグループ化したいとします。また、それらが互いにどれだけ近いかを知り、統計的有意性を知るための測定も必要です。

データ

       eat_rate drink_rate   sleep_rate    play_rate  name   game
1  0.0542192259 0.13041721 5.013682e-03 1.023533e-06  Paul Rayman
4  0.0688171511 0.01050611 6.178833e-03 3.238838e-07  Paul  Mario
6  0.0928997660 0.01828468 9.321211e-03 3.525951e-07  Jenn  Mario
7  0.0001631273 0.02212345 7.061524e-05 1.531270e-07  Jean   FIFA
8  0.0028735509 0.05414688 1.341689e-03 4.533366e-07  Mark   FIFA
10 0.0034844717 0.09152440 4.589990e-04 5.802708e-07  Mark Rayman
11 0.0340738956 0.03384180 1.636508e-02 1.354973e-07  Mark   FIFA
12 0.0266112679 0.20002020 3.380704e-02 4.533366e-07  Mark  Sonic
14 0.0046597056 0.01848672 5.472681e-04 4.034696e-07  Paul   FIFA
15 0.0202715299 0.16365289 2.994086e-02 4.044770e-07 Lucas   SSBM

再現:

structure(list(eat_rate = c(0.0542192259374624, 0.0688171511010916, 
0.0928997659570807, 0.000163127341146237, 0.00287355085557602, 
0.00348447171120939, 0.0340738956099744, 0.0266112679045701, 
0.00465970561072008, 0.0202715299408583), drink_rate = c(0.130417213859986, 
0.0105061117284574, 0.0182846752197192, 0.0221234468128094, 0.0541468835235882, 
0.0915243964036772, 0.0338418022022427, 0.200020204061016, 0.0184867158298818, 
0.163652894231741), sleep_rate = c(0.00501368170182717, 0.00617883308323771, 
0.00932121105128431, 7.06152352370024e-05, 0.00134168946950305, 
0.000458999029040516, 0.0163650807661753, 0.0338070438697149, 
0.000547268073086768, 0.029940859740489), play_rate = c(1.02353325645595e-06, 
3.23883801132467e-07, 3.52595117873603e-07, 1.53127022619393e-07, 
4.53336580123204e-07, 5.80270822557701e-07, 1.35497266725713e-07, 
4.53336580123204e-07, 4.03469556309652e-07, 4.04476970932148e-07
), name = structure(c(5L, 5L, 2L, 1L, 4L, 4L, 4L, 4L, 5L, 3L), .Label = c("Jean", 
"Jenn", "Lucas", "Mark", "Paul"), class = "factor"), game = structure(c(3L, 
2L, 2L, 1L, 1L, 3L, 1L, 4L, 1L, 5L), .Label = c("FIFA", "Mario", 
"Rayman", "Sonic", "SSBM"), class = "factor")), .Names = c("eat_rate", 
"drink_rate", "sleep_rate", "play_rate", "name", "game"), row.names = c(1L, 
4L, 6L, 7L, 8L, 10L, 11L, 12L, 14L, 15L), class = "data.frame")

質問

データセットを仲間として(連続的でカテゴリカルな機能を使用して)与えた場合、名前で識別された人物(カテゴリカルな回答)が他の人物とより相関していることをどのように知ることができますか?

回答:


6

1つの方法は、定量値(再生、食事、飲酒、睡眠率)を正規化して、すべて同じ範囲(たとえば、0-> 1)にし、各ゲームを独自の「次元」に割り当て、値0または1.各行をベクトルに変換し、長さを1に正規化します。これで、類似性の尺度として任意の2人の正規化されたベクトルの内積を比較できます。このようなものはテキストマイニングでかなり頻繁に使用されます


類似性行列のRコード

データフレームを変数「D」に保存したと仮定します

#Get normalization factors for quantitative measures
maxvect<-apply(D[,1:4],MARGIN=2,FUN=max)
minvect<-apply(D[,1:4],MARGIN=2,FUN=min)
rangevect<-maxvect-minvect
#Normalize quantative factors
D_matrix <- as.matrix(D[,1:4])
NormDMatrix<-matrix(nrow=10,ncol=4)
colnames(NormDMatrix)<-colnames(D_matrix)
for (i in 1:4) NormDMatrix[,i]<-(D_matrix[,i]-minvect[i]*rep(1,10))/rangevect[i]
gamenames<-unique(D[,"game"])
#Create dimension matrix for games
Ngames<-length(gamenames)
GameMatrix<-matrix(nrow=10,ncol=Ngames)
for (i in 1:Ngames) GameMatrix[,i]<-as.numeric(D[,"game"]==gamenames[i])
colnames(GameMatrix)<-gamenames
#combine game matrix with normalized quantative matrix
People<-D[,"name"]
RowVectors<-cbind(GameMatrix,NormDMatrix)
#normalize each row vector to length of 1 and then store as a data frame with person names
NormRowVectors<-t(apply(RowVectors,MARGIN=1,FUN=function(x) x/sqrt(sum(x*x))))
dfNorm<-data.frame(People,NormRowVectors)

#create person vectors via addition of appropriate row vectors
PersonMatrix<-array(dim=c(length(unique(People)),ncol(RowVectors)))
rownames(PersonMatrix)<-unique(People)
for (p in unique(People)){
  print(p)
  MatchIndex<-(dfNorm[,1]==p)*seq(1,nrow(NormRowVectors))
  MatchIndex<-MatchIndex[MatchIndex>0]
  nclm<-length(MatchIndex)
  SubMatrix<-matrix(NormRowVectors[MatchIndex,],nrow=length(MatchIndex),ncol=dim(NormRowVectors)[2])
  CSUMS<-colSums(SubMatrix)
  NormSum<-sqrt(sum(CSUMS*CSUMS))
  PersonMatrix[p,]<-CSUMS/NormSum
}
colnames(PersonMatrix)<-colnames(NormRowVectors)
#Calculate matrix of dot products
Similarity<-(PersonMatrix)%*%t(PersonMatrix)

答えてくれてありがとう。完璧な答えを得るために、私が与えた例でそれを行うためのRコードを与えてもらえませんか?
zipp 2015年

1
バツバツT

2

正規化されたユークリッド距離にもかかわらず、ピアソン距離を類似性の尺度として確認することもできます。ここにきちんとした説明があります:http : //mines.humanoriented.com/classes/2010/fall/csci568/portfolio_exports/sphilip/pear.html


ピアソンに関して私が抱えている問題は、データを結合してカテゴリ変数を処理する方法がわからないことです(多分、提案されたbeyのようなダミー変数で実行できますが、うまくいくかどうかは
わかり

0
  • すべての連続変数を1つの範囲(0-1)に正規化することができます
  • カテゴリー変数をOne Hot Enconderとして正規化する
  • ピアソン相関のような類似性アルゴリズム/(ユークリッド、コサイン類似性)のような距離アルゴリズムを適用します
弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.