私の知る限り、実際の擬似乱数生成の実装のほとんどは、線形シフトフィードバックレジスタ(LSFR)、またはこれらの「Mersenne Twister」アルゴリズムなどの方法を使用しています。多くの(ヒューリスティック)統計テストに合格する一方で、たとえば、すべての効率的に計算可能な統計テストに対して疑似ランダムに見えるという理論的な保証はありません。しかし、これらの方法は、暗号化プロトコルから科学計算、銀行業(おそらく)まで、あらゆる種類のアプリケーションで無差別に使用されます。これらのアプリケーションが意図したとおりに動作するかどうかについて、ほとんど、またはまったく保証がないということは、少し心配です(何らかの分析は、入力として真のランダム性を想定しているためです)。
一方、複雑性理論と暗号化は、疑似乱数性の非常に豊富な理論を提供し、一方向関数の候補を使用して、思いつく可能性のある効率的な統計テストをだます疑似乱数ジェネレーターの候補構成さえあります。
私の質問は次のとおりです。この理論は実用化されましたか?暗号化や科学計算などのランダム性の重要な用途には、理論的には正しいPRGが使用されることを願っています。
余談ですが、LSFRをランダム性のソースとして使用する場合、クイックソートなどの一般的なアルゴリズムがどれだけうまく機能するかについての限られた分析を見つけることができました。KarloffとRaghavanの「ランダム化されたアルゴリズムと擬似乱数」を参照してください。