一貫性と完全性は健全性を意味するという質問を読んでいましたか?そして、その中の最初の文は言う:
健全性は一貫性を意味することを理解しています。
健全性は一貫性よりも弱い表現だと思っていたので、私は非常に困惑していました(つまり、一貫性のあるシステムは健全でなければならないと思っていましたが、それは真実ではないと思います)。一貫性と健全性のために、MITの6.045 / 18.400コースで Scott Aaronsonが使用していた非公式の定義を使用していました。
- 健全性=証明システムは、証明するすべてのステートメントが実際に真実である場合に証明されます(証明可能なものはすべて真実です)。すなわち、IF(は証明可能)(はTrue)。したがって、IF(式へのパスがあります)THEN(その式はTrueです)
- 一貫性=一貫性のあるシステムは、決してAとNOT(A)を証明しません。したがって、1つのAまたはその否定のみがTrueになります。
これらの(おそらく非公式の)定義を念頭に置いて、健全ではあるが一貫性のないシステムがあることを示すために、次の例を作成しました。
サウンドシステムだと思った理由は、公理が正しいと仮定するからです。したがって、AではなくAが両方とも当てはまります(はい、除外された中間の法則は含まれていません)。唯一の推論規則は否定であるため、公理からAではなくAの両方に到達し、互いに到達できることがわかります。したがって、このシステムに関してはTrueステートメントのみに到達します。ただし、システム内の唯一のステートメントの否定を証明できるため、もちろんシステムは一貫していません。したがって、サウンドシステムには一貫性がない可能性があることを示しました。この例が間違っているのはなぜですか?私は何を間違えましたか?
私の頭の中でこれは直感的に理にかなっています。健全性とは、推論ルールから始めて公理とクランクを設定すると、真の目的地(ステートメント)にのみ到達するということです。ただし、実際にどの目的地に到着したかはわかりません。ただし、一貫性は、または(両方ではない)に到達する宛先にのみ到達できることを示しています。したがって、すべての一貫したシステムには、公理として除外された中間の法則を含める必要があります。もちろん、私はそうではなく、唯一の公理の否定を他の公理として含めました。だから、私があまりにも賢いことをしたとは思わないが、どういうわけか何かが間違っていますか?¬ A
私はスコットの非公式の定義を使用しているため、それが問題になる可能性があることに気づきました。質問を書く前でもウィキペディアをチェックしましたが、その定義は私には意味がありませんでした。特に彼らが言う部分:
システムのセマンティクスに関して
完全な引用は次のとおりです。
システムで証明できるすべての式は、システムのセマンティクスに関して論理的に有効です。