「決定論的文脈自由文法」などの表現で「決定論的」が意味するものを理解しようとしています。(このフィールドには、より決定的な「もの」があります)。最も手の込んだ説明よりも例を挙げていただければ幸いです!可能なら。
混乱の主な原因は、文法のこの特性が(非)曖昧性とどのように異なるかを理解できないことです。
それが何を意味するかを見つけるのに最も近かったのは、D。Knuthの論文からの引用です。 、左から右への言語の翻訳に関するです:
Ginsburg and Greibach(1965)は、決定論的言語の概念を定義しています。セクションVでは、これらがまさにLR(k)文法が存在する言語であることを示しています
あなたがに着くとすぐに円形になります Section V
そこには、LR(k)パーサーが解析できるのは決定論的言語であると言われているからです...
以下は、「あいまいな」の意味を理解するのに役立つ例です。ご覧ください。
onewartwoearewe
one war two ear ewe
またはとして解析できますo new art woe are we
-文法がそれを許可する場合(たとえば、私がリストしたばかりのすべての単語を持っている)。
このサンプル言語を(非)決定論的にするには、何をする必要がありますか?(たとえば、単語を削除できますo
文法からをして、文法が曖昧にならないようにすることができます)。
上記の言語は決定的ですか?
PS。この例は、Godel、Esher、Bach:Eternal Golden Braidの本からのものです。
例の言語の文法を次のように定義するとしましょう。
S -> A 'we' | A 'ewe'
A -> B | BA
B -> 'o' | 'new' | 'art' | 'woe' | 'are' | 'one' | 'war' | 'two' | 'ear'
文字列全体を解析する必要があるという議論により、この文法は言語を非決定的にしますか?
let explode s =
let rec exp i l =
if i < 0 then l else exp (i - 1) (s.[i] :: l) in
exp (String.length s - 1) [];;
let rec woe_parser s =
match s with
| 'w' :: 'e' :: [] -> true
| 'e' :: 'w' :: 'e' :: [] -> true
| 'o' :: x -> woe_parser x
| 'n' :: 'e' :: 'w' :: x -> woe_parser x
| 'a' :: 'r' :: 't' :: x -> woe_parser x
| 'w' :: 'o' :: 'e' :: x -> woe_parser x
| 'a' :: 'r' :: 'e' :: x -> woe_parser x
(* this line will trigger an error, because it creates
ambiguous grammar *)
| 'o' :: 'n' :: 'e' :: x -> woe_parser x
| 'w' :: 'a' :: 'r' :: x -> woe_parser x
| 't' :: 'w' :: 'o' :: x -> woe_parser x
| 'e' :: 'a' :: 'r' :: x -> woe_parser x
| _ -> false;;
woe_parser (explode "onewartwoearewe");;
- : bool = true
| Label | Pattern |
|---------+--------------|
| rule-01 | S -> A 'we' |
| rule-02 | S -> A 'ewe' |
| rule-03 | A -> B |
| rule-04 | A -> BA |
| rule-05 | B -> 'o' |
| rule-06 | B -> 'new' |
| rule-07 | B -> 'art' |
| rule-08 | B -> 'woe' |
| rule-09 | B -> 'are' |
| rule-10 | B -> 'one' |
| rule-11 | B -> 'war' |
| rule-12 | B -> 'two' |
| rule-13 | B -> 'ear' |
#+TBLFM: @2$1..@>$1='(format "rule-%02d" (1- @#));L
Generating =onewartwoearewe=
First way to generate:
| Input | Rule | Product |
|-------------------+---------+-------------------|
| '' | rule-01 | A'we' |
| A'we' | rule-04 | BA'we' |
| BA'we' | rule-05 | 'o'A'we' |
| 'o'A'we' | rule-04 | 'o'BA'we' |
| 'o'BA'we' | rule-06 | 'onew'A'we' |
| 'onew'A'we' | rule-04 | 'onew'BA'we' |
| 'onew'BA'we' | rule-07 | 'onewart'A'we' |
| 'onewart'A'we' | rule-04 | 'onewart'BA'we' |
| 'onewart'BA'we' | rule-08 | 'onewartwoe'A'we' |
| 'onewartwoe'A'we' | rule-03 | 'onewartwoe'B'we' |
| 'onewartwoe'B'we' | rule-09 | 'onewartwoearewe' |
|-------------------+---------+-------------------|
| | | 'onewartwoearewe' |
Second way to generate:
| Input | Rule | Product |
|-------------------+---------+-------------------|
| '' | rule-02 | A'ewe' |
| A'ewe' | rule-04 | BA'ewe' |
| BA'ewe' | rule-10 | 'one'A'ewe' |
| 'one'A'ewe' | rule-04 | 'one'BA'ewe' |
| 'one'BA'ewe' | rule-11 | 'onewar'A'ewe' |
| 'onewar'A'ewe' | rule-04 | 'onewar'BA'ewe' |
| 'onewar'BA'ewe' | rule-12 | 'onewartwo'A'ewe' |
| 'onewartwo'A'ewe' | rule-03 | 'onewartwo'B'ewe' |
| 'onewartwo'B'ewe' | rule-13 | 'onewartwoearewe' |
|-------------------+---------+-------------------|
| | | 'onewartwoearewe' |
B -> 'o'
)を削除すると、あいまいになりません...
S
ルールを適用することにより。S := ...
、我々が得る...
...、」