ビット大陸を作る


11

ビットのマトリックス(少なくとも1つを含む1)があると想像してください。

0 1 0 1 1 0 1 0 0 1 0
0 1 0 1 0 0 1 0 1 1 0
0 0 1 0 1 1 0 1 0 1 0
1 1 0 0 1 0 0 1 1 0 1
0 0 0 1 0 1 1 0 0 1 0

この行列の一部のビットを、1sの連続したblobを形成するように設定します。この場合、すべて11直交運動によって互いに直接または間接的に接続されます。

0 1 1 1 1 1 1 0 0 1 0
0 1 0 1 0 0 1 0 1 1 0
0 1 1 0 1 1 1 1 0 1 0
1 1 0 0 1 0 0 1 1 1 1
0 0 0 1 1 1 1 0 0 1 0

1ブラウザの「検索」機能で検索すると、これをより明確に見ることができます。)

ただし、設定するビット数も最小限に抑える必要があります。

タスク

ビットまたはブールの行列(または配列の配列)を指定すると、1sの連続した大陸を作成するために設定する必要がある最小ビット数を返します。他のセットビットに対して直交方向にのみ移動することにより、マトリックス内のあるセットビットから別のセットビットに到達することが可能であるべきです。

これはであるため、最短の有効な送信(バイト単位で測定)が優先されます。

テストケース

0 1 0 1 1 0 1 0 0 1 0
0 1 0 1 0 0 1 0 1 1 0
0 0 1 0 1 1 0 1 0 1 0
1 1 0 0 1 0 0 1 1 0 1
0 0 0 1 0 1 1 0 0 1 0
=> 6

1 0 0 0 0 0 1 0 0
1 1 0 0 1 1 1 0 0
1 1 1 0 1 1 1 1 1
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1
0 1 0 0 0 0 1 1 0
1 0 0 0 0 0 1 0 0
=> 4

0 0 0 1 1 1 0 1 1
0 0 1 0 0 0 0 1 0
0 0 1 1 1 1 1 1 0
1 1 0 0 1 1 0 0 0
0 0 1 1 1 0 0 1 1
0 1 1 1 0 0 0 0 0
1 1 1 0 0 1 1 1 0
1 1 1 0 1 1 0 1 1
0 0 0 0 1 0 0 0 1
1 1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 1 0
0 1 1 1 1 0 0 0 0
0 0 0 1 1 0 0 0 1
0 1 0 0 1 0 1 1 0
0 1 1 1 0 0 0 0 1
=> 8

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
=> 0

1
これにはもう少し説明が必要です。マトリックス内の「連続ブロブ」とは何ですか?
-NoOneIsHere

11
問題はNP困難であることが知られているので、fastest-algorithmにとって良い問題ではありません。
ピーターテイラー

1
@ピーターテイラーとエソランジングフルーツNP硬度
FantaC

1
Peter TaylorとHyperNeutrinoのコメント、および質問には現在回答がないという事実を踏まえて、スコアリング方法をcode-golfに変更します
エソランジングフルーツ

1
1マトリックスにない場合はどうすればよいですか?
コレラSu

回答:


1

C(gcc)、308 306バイト

関数fはを受け取り(height, width, flattened array, pointer to ans)、ポインタで答えを返します。

1行列にない場合、を返し0ます。

#define v A[i]
N,M,K,R,C,T,i,*A;s(x,y){i=x*M+y;if(!(x<0|y<0|x>=N|y>=M|v^1))v=2,s(x,y+1),s(x,y-1),s(x+1,y),s(x-1,y);}g(i){if(C<R){if(i^K){g(i+1);if(!v)C+=v=1,g(i+1),v=0,C--;}else{T=1;for(i=0;i<K&&!v;i++);s(i/M,i%M);for(i=0;i<K;i++)T&=v^1,v=!!v;if(T)R=C;}}}f(n,m,a,b)int*a,*b;{K=R=(N=n)*(M=m),A=a;g(0);*b=R;}

オンラインでお試しください!

ゴルフをしていない:

N,M,R,C,T,i,*A; // height, width, result, recursion depth

s(x,y)
{ // depth first search: replace all 1 in the same connected component with 2
    i=x*M+y;
    if(!(x<0|y<0|x>=N|y>=M|A[i]^1)) { // check if out of boundary
        A[i]=2;
        s(x, y+1),s(x, y-1),s(x+1, y),s(x-1, y);
    }
}

g(i)
{ // enumerate all posible solutions
    if(C<R) {
        if(i!=N*M) {
            g(i+1);      // nothing change for this entry
            if (!A[i]) { // set the entry to 1
                C++, A[i]=1;
                g(i+1);
                C--, A[i]=0;
            }
        }
        else {
            T=1;
            for (i=0; i<N*M && !A[i]; i++); // find first non-zero entry
            s(i/M, i%M);     // replace the connected component
            for (i=0; i<N*M; i++) {
                T&=A[i]!=1;   // check if no other components
                A[i]=!!A[i]; // change 2s back to 1
            }
            if (T) R=C;      // update answer
        }
    }
}

f(n,m,a,b)int*a,*b;{
    R=(N=n)*(M=m), A=a;
    g(0);
    *b=R;
}

0

Python 2、611バイト

ユーザー入力を通じてリストのリストを取得する完全なプログラム。機能Iとはd、アレイ内の島の数を数えます。最後のforループは、0sを1sに変更できるすべての可能性を列挙し、1つの島が残っている場合1、リストに追加されたs の数を格納しますC。そのリストの最小値は、アイランドを接続するために必要なビットフリップの最小数です。非常に遅いアルゴリズムであるため、60年代未満のテストケースは実行されません(これ以上は試行しませんでした)が、いくつかのより小さい(〜5x5)テストケースを試行しましたが、正常に動作しているようです。このページからアイランドカウントアルゴリズムを取得しました。

from itertools import*
def d(g,i,j,v):
 v[i][j],R,C=1,[-1,1,0,0],[0,0,-1,1]
 for k in range(4):
	if len(g)>i+R[k]>=0<=j+C[k]<len(g[0]):
	 if v[i+R[k]][j+C[k]]<1and g[i+R[k]][j+C[k]]:v=d(g,i+R[k],j+C[k],v)
 return v
def I(g):
 w=len(g[0])
 v,c=[w*[0]for r in g],0
 for i in range(len(g)*w):
	if v[i/w][i%w]<1and g[i/w][i%w]>0:v=d(g,i/w,i%w,v);c+=1
 return c           
g=input()
C=[]
for p in [list(t)for t in product([0,1],repeat=sum(r.count(0)for r in g))]:
 h,G,x=0,[r[:]for r in g],len(g[0])
 for i in range(x*len(G)):
	if G[i/x][i%x]<1:h+=p[0];G[i/x][i%x]=p[0];del p[0]
 if I(G)<2:
	C.append(h)
print min(C)

オンラインでお試しください!

いくつかのことを最適化する前のPregolfedバージョン:

from itertools import*
def d(g,i,j,v):
    v[i][j]=1
    R=[-1,1,0,0]
    C=[0,0,-1,1]
    for k in range(4):
        if len(g)>i+R[k]>=0<=j+C[k]<len(g[0]):
            if v[i+R[k]][j+C[k]]<1:
                if g[i+R[k]][j+C[k]]:
                    v=d(g,i+R[k],j+C[k],v)
    return v
def I(g):
    w=len(g[0])
    v=[[0]*w for r in g]
    c=0
    for i in range(len(g)):
        for j in range(w):
            if v[i][j]<1and g[i][j]>0:
                v=d(g,i,j,v)
                c+=1
    return c           
g=input()
z=sum(r.count(0)for r in g)
f=[list(t)for t in product('01',repeat=z)]
C=[]
for p in f:
    h=0
    G=[r[:]for r in g]
    x=len(G[0])
    for i in range(x*len(G)):
        exec('h+=int(p[0]);G[i/x][i%x]=int(p[0]);del p[0]'*(G[i/x][i%x]<1))
    if I(G)<2:
        C.append(h)
print min(C)
弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.