3
ニューラルネットワークを使用して行列のパターンを認識する
CADモデルの設計機能(スロット、ボス、穴、ポケット、ステップ)を識別できるニューラルネットワークを開発しようとしています。 ネットワークに使用する入力データは、axnマトリックスです(nはCADモデルの面の数です)。マトリックスの右上の三角形の「1」は、2つの面の間の凸関係を表し、左下の三角形の「1」は、凹関係を表します。両方の位置のゼロは、面が隣接していないことを意味します。以下の画像は、そのようなマトリックスの例を示しています。 ネットワークへの入力を一定のサイズにするために、最大モデルサイズを20面に設定し、それよりも小さいものにパディングを適用するとします。 5つの異なる設計機能を認識できるようにしたいので、5つの出力ニューロンを持ちます-[スロット、ポケット、穴、ボス、ステップ] これが一種の「パターン認識」問題になると言ってもいいでしょうか?たとえば、ネットワークに、モデルに存在する設計機能を説明するラベルとともにいくつかのトレーニングモデルを提供すると、ネットワークは、特定の設計機能に関連するマトリックスで表される特定の隣接パターンを認識することを学習しますか? 私は機械学習の完全な初心者であり、このアプローチが機能するかどうかを把握しようとしています。問題を理解するためにさらに情報が必要な場合は、コメントを残してください。どんな入力やヘルプもありがとうございます。