不明または混合エンコードのテキストファイルがあります。UTF-8ではないバイトシーケンスを含む行を表示したい(テキストファイルを何らかのプログラムにパイプすることにより)。同様に、有効なUTF-8である行を除外したいと思います。言い換えれば、私は探しています。grep [notutf8]
理想的な解決策は、移植可能で、短く、他のエンコードに一般化できるものですが、UTF-8の定義を焼き付けるのが最善の方法だと感じたら先に進んでください。
不明または混合エンコードのテキストファイルがあります。UTF-8ではないバイトシーケンスを含む行を表示したい(テキストファイルを何らかのプログラムにパイプすることにより)。同様に、有効なUTF-8である行を除外したいと思います。言い換えれば、私は探しています。grep [notutf8]
理想的な解決策は、移植可能で、短く、他のエンコードに一般化できるものですが、UTF-8の定義を焼き付けるのが最善の方法だと感じたら先に進んでください。
回答:
を使用する場合はgrep
、次のことができます。
grep -axv '.*' file
UTF-8ロケールで、少なくとも無効なUTF-8シーケンスを持つ行を取得します(これは少なくともGNU Grepで機能します)。
-a
、POSIXで動作するために必要です。ただし、GNU grep
は少なくとも、UTF-8でエンコードされたUTF-16のサロゲート非文字または0x10FFFFを超えるコードポイントを見つけることはできません。
-a
GNUに必要ですgrep
(これはPOSIXに準拠していないと思います)。、サロゲート領域とから0x10FFFF上記コードポイントに関しては、これは、(説明する可能性が次にバグであることを)。このため、追加-P
はGNU grep
2.21で機能するはずです(ただし、遅いです)。少なくともDebian grep / 2.20-4ではバグがあります。
grep
テキストユーティリティであるため(テキスト入力でのみ動作するはずです)、動作が指定されていないため、GNU grepの動作はここと同じように有効です。
grep
(無効なシーケンスを不一致と見なすことを目的とする)などの実装とバグの可能性を知る必要があります。
おそらくiconvが必要だと思います。コードセット間で変換するためのものであり、とてつもない数のフォーマットをサポートしています。たとえば、UTF-8で無効なものを削除するには、次を使用できます。
iconv -c -t UTF-8 < input.txt > output.txt
-cオプションを指定しないと、stderrへの変換に関する問題が報告されるため、プロセスの方向を指定すると、これらのリストを保存できます。別の方法は、非UTF8のものを削除してから
diff input.txt output.txt
変更が行われた場所のリスト。
iconv -c -t UTF-8 <input.txt | diff input.txt - | sed -ne 's/^< //p'
。ただし、入力を2回読み取る必要があるため、パイプラインとしては機能しません(いいえ、機能しtee
ません。バッファリングiconv
とバッファの量によってはブロックされる可能性がありdiff
ます)。
diff <(iconv -c -t UTF-8 <input.txt) input.txt
編集:正規表現のタイプミスを修正しました。\ 80ではなく '\ x80`が必要でした。
UTF-8に厳密に準拠するために、無効なUTF-8フォームを除外する正規表現は次のとおりです。
perl -l -ne '/
^( ([\x00-\x7F]) # 1-byte pattern
|([\xC2-\xDF][\x80-\xBF]) # 2-byte pattern
|((([\xE0][\xA0-\xBF])|([\xED][\x80-\x9F])|([\xE1-\xEC\xEE-\xEF][\x80-\xBF]))([\x80-\xBF])) # 3-byte pattern
|((([\xF0][\x90-\xBF])|([\xF1-\xF3][\x80-\xBF])|([\xF4][\x80-\x8F]))([\x80-\xBF]{2})) # 4-byte pattern
)*$ /x or print'
出力(テスト1からのキー行の):
Codepoint
=========
00001000 Test=1 mode=strict valid,invalid,fail=(1000,0,0)
0000E000 Test=1 mode=strict valid,invalid,fail=(D800,800,0)
0010FFFF mode=strict test-return=(0,0) valid,invalid,fail=(10F800,800,0)
Q.無効なUnicodeをフィルタリングする正規表現をテストするために、どのようにテストデータを作成しますか?
A.独自のUTF-8テストアルゴリズムを作成し、ルールを破ります...
Catch-22 .. では、テストアルゴリズムをどのようにテストしますか?
上記の正規表現は、iconv
から0x00000
までのすべての整数値に対して(参照として使用して)テストされてい0x10FFFF
ます。この上限値は、Unicode Codepointの最大整数値です。
このウィキペディアのUTF-8ページに よると、
この数(1,112,064)は、範囲0x000000
に相当します0x10F7FF
。これは、最高のUnicodeコードポイントの実際の最大整数値の0x0800シャイです:0x10FFFF
この整数ブロックは、サロゲートペアと呼ばれるシステムを介して元の設計意図を超えてUTF-16エンコードを行う必要があるため、Unicode Codepointsスペクトルから欠落しています。整数のブロックは、UTF-16で使用するために予約されています。このブロックは、範囲をに拡張します。これらの整数はいずれも正当なUnicode値ではないため、無効なUTF-8値です。 0x0800
0x00D800
0x00DFFF
ではテスト1、regex
Unicodeのコードポイントの範囲内の全ての数に対してテストされてきた、そしてそれはのexectly結果と一致するiconv
...すなわち。0x010F7FFの有効な値、および0x000800の無効な値。
ただし、次の問題が発生します。*正規表現が範囲外のUTF-8値をどのように処理するか。上記0x010FFFF
(UTF-8は6バイトに拡張でき、最大整数値は0x7FFFFFFF?
必要な* 非Unicode UTF-8バイト値を生成するには、次のコマンドを使用しました。
perl -C -e 'print chr 0x'$hexUTF32BE
(何らかの方法で)それらの妥当性をテストするために、Gilles'
UTF-8正規表現を使用しました...
perl -l -ne '/
^( [\000-\177] # 1-byte pattern
|[\300-\337][\200-\277] # 2-byte pattern
|[\340-\357][\200-\277]{2} # 3-byte pattern
|[\360-\367][\200-\277]{3} # 4-byte pattern
|[\370-\373][\200-\277]{4} # 5-byte pattern
|[\374-\375][\200-\277]{5} # 6-byte pattern
)*$ /x or print'
「perlの印刷CHR」の出力は、ジル正規表現のフィルタリングと一致した。..一つは、他の有効性を強化..私は使用することはできませんiconv
、それは唯一の広い(オリジナルの)UTF-8の有効-Unicode標準のサブセットを処理するため標準...
関連する数値はかなり大きいため、11111、13579、33333、53441などの範囲ごとのステップスキャンをテストしました。結果はすべて一致しているため、残っているのは、これらの範囲外のUTF-8スタイルの値に対して正規表現をテストすることです(Unicodeには無効です。したがって、厳密なUTF-8自体にも無効です)。
テストモジュールは次のとおりです。
[[ "$(locale charmap)" != "UTF-8" ]] && { echo "ERROR: locale must be UTF-8, but it is $(locale charmap)"; exit 1; }
# Testing the UTF-8 regex
#
# Tests to check that the observed byte-ranges (above) have
# been accurately observed and included in the test code and final regex.
# =========================================================================
: 2 bytes; B2=0 # run-test=1 do-not-test=0
: 3 bytes; B3=0 # run-test=1 do-not-test=0
: 4 bytes; B4=0 # run-test=1 do-not-test=0
: regex; Rx=1 # run-test=1 do-not-test=0
((strict=16)); mode[$strict]=strict # iconv -f UTF-16BE then iconv -f UTF-32BE beyond 0xFFFF)
(( lax=32)); mode[$lax]=lax # iconv -f UTF-32BE only)
# modebits=$strict
# UTF-8, in relation to UTF-16 has invalid values
# modebits=$strict automatically shifts to modebits=$lax
# when the tested integer exceeds 0xFFFF
# modebits=$lax
# UTF-8, in relation to UTF-32, has no restrictione
# Test 1 Sequentially tests a range of Big-Endian integers
# * Unicode Codepoints are a subset ofBig-Endian integers
# ( based on 'iconv' -f UTF-32BE -f UTF-8 )
# Note: strict UTF-8 has a few quirks because of UTF-16
# Set modebits=16 to "strictly" test the low range
Test=1; modebits=$strict
# Test=2; modebits=$lax
# Test=3
mode3wlo=$(( 1*4)) # minimum chars * 4 ( '4' is for UTF-32BE )
mode3whi=$((10*4)) # minimum chars * 4 ( '4' is for UTF-32BE )
#########################################################################
# 1 byte UTF-8 values: Nothing to do; no complexities.
#########################################################################
# 2 Byte UTF-8 values: Verifying that I've got the right range values.
if ((B2==1)) ; then
echo "# Test 2 bytes for Valid UTF-8 values: ie. values which are in range"
# =========================================================================
time \
for d1 in {194..223} ;do
# bin oct hex dec
# lo 11000010 302 C2 194
# hi 11011111 337 DF 223
B2b1=$(printf "%0.2X" $d1)
#
for d2 in {128..191} ;do
# bin oct hex dec
# lo 10000000 200 80 128
# hi 10111111 277 BF 191
B2b2=$(printf "%0.2X" $d2)
#
echo -n "${B2b1}${B2b2}" |
xxd -p -u -r |
iconv -f UTF-8 >/dev/null || {
echo "ERROR: Invalid UTF-8 found: ${B2b1}${B2b2}"; exit 20; }
#
done
done
echo
# Now do a negated test.. This takes longer, because there are more values.
echo "# Test 2 bytes for Invalid values: ie. values which are out of range"
# =========================================================================
# Note: 'iconv' will treat a leading \x00-\x7F as a valid leading single,
# so this negated test primes the first UTF-8 byte with values starting at \x80
time \
for d1 in {128..193} {224..255} ;do
#for d1 in {128..194} {224..255} ;do # force a valid UTF-8 (needs $B2b2)
B2b1=$(printf "%0.2X" $d1)
#
for d2 in {0..127} {192..255} ;do
#for d2 in {0..128} {192..255} ;do # force a valid UTF-8 (needs $B2b1)
B2b2=$(printf "%0.2X" $d2)
#
echo -n "${B2b1}${B2b2}" |
xxd -p -u -r |
iconv -f UTF-8 2>/dev/null && {
echo "ERROR: VALID UTF-8 found: ${B2b1}${B2b2}"; exit 21; }
#
done
done
echo
fi
#########################################################################
# 3 Byte UTF-8 values: Verifying that I've got the right range values.
if ((B3==1)) ; then
echo "# Test 3 bytes for Valid UTF-8 values: ie. values which are in range"
# ========================================================================
time \
for d1 in {224..239} ;do
# bin oct hex dec
# lo 11100000 340 E0 224
# hi 11101111 357 EF 239
B3b1=$(printf "%0.2X" $d1)
#
if [[ $B3b1 == "E0" ]] ; then
B3b2range="$(echo {160..191})"
# bin oct hex dec
# lo 10100000 240 A0 160
# hi 10111111 277 BF 191
elif [[ $B3b1 == "ED" ]] ; then
B3b2range="$(echo {128..159})"
# bin oct hex dec
# lo 10000000 200 80 128
# hi 10011111 237 9F 159
else
B3b2range="$(echo {128..191})"
# bin oct hex dec
# lo 10000000 200 80 128
# hi 10111111 277 BF 191
fi
#
for d2 in $B3b2range ;do
B3b2=$(printf "%0.2X" $d2)
echo "${B3b1} ${B3b2} xx"
#
for d3 in {128..191} ;do
# bin oct hex dec
# lo 10000000 200 80 128
# hi 10111111 277 BF 191
B3b3=$(printf "%0.2X" $d3)
#
echo -n "${B3b1}${B3b2}${B3b3}" |
xxd -p -u -r |
iconv -f UTF-8 >/dev/null || {
echo "ERROR: Invalid UTF-8 found: ${B3b1}${B3b2}${B3b3}"; exit 30; }
#
done
done
done
echo
# Now do a negated test.. This takes longer, because there are more values.
echo "# Test 3 bytes for Invalid values: ie. values which are out of range"
# =========================================================================
# Note: 'iconv' will treat a leading \x00-\x7F as a valid leading single,
# so this negated test primes the first UTF-8 byte with values starting at \x80
#
# real 26m28.462s \
# user 27m12.526s | stepping by 2
# sys 13m11.193s /
#
# real 239m00.836s \
# user 225m11.108s | stepping by 1
# sys 120m00.538s /
#
time \
for d1 in {128..223..1} {240..255..1} ;do
#for d1 in {128..224..1} {239..255..1} ;do # force a valid UTF-8 (needs $B2b2,$B3b3)
B3b1=$(printf "%0.2X" $d1)
#
if [[ $B3b1 == "E0" ]] ; then
B3b2range="$(echo {0..159..1} {192..255..1})"
#B3b2range="$(> {192..255..1})" # force a valid UTF-8 (needs $B3b1,$B3b3)
elif [[ $B3b1 == "ED" ]] ; then
B3b2range="$(echo {0..127..1} {160..255..1})"
#B3b2range="$(echo {0..128..1} {160..255..1})" # force a valid UTF-8 (needs $B3b1,$B3b3)
else
B3b2range="$(echo {0..127..1} {192..255..1})"
#B3b2range="$(echo {0..128..1} {192..255..1})" # force a valid UTF-8 (needs $B3b1,$B3b3)
fi
for d2 in $B3b2range ;do
B3b2=$(printf "%0.2X" $d2)
echo "${B3b1} ${B3b2} xx"
#
for d3 in {0..127..1} {192..255..1} ;do
#for d3 in {0..128..1} {192..255..1} ;do # force a valid UTF-8 (needs $B2b1)
B3b3=$(printf "%0.2X" $d3)
#
echo -n "${B3b1}${B3b2}${B3b3}" |
xxd -p -u -r |
iconv -f UTF-8 2>/dev/null && {
echo "ERROR: VALID UTF-8 found: ${B3b1}${B3b2}${B3b3}"; exit 31; }
#
done
done
done
echo
fi
#########################################################################
# Brute force testing in the Astral Plane will take a VERY LONG time..
# Perhaps selective testing is more appropriate, now that the previous tests
# have panned out okay...
#
# 4 Byte UTF-8 values:
if ((B4==1)) ; then
echo "# Test 4 bytes for Valid UTF-8 values: ie. values which are in range"
# ==================================================================
# real 58m18.531s \
# user 56m44.317s |
# sys 27m29.867s /
time \
for d1 in {240..244} ;do
# bin oct hex dec
# lo 11110000 360 F0 240
# hi 11110100 364 F4 244 -- F4 encodes some values greater than 0x10FFFF;
# such a sequence is invalid.
B4b1=$(printf "%0.2X" $d1)
#
if [[ $B4b1 == "F0" ]] ; then
B4b2range="$(echo {144..191})" ## f0 90 80 80 to f0 bf bf bf
# bin oct hex dec 010000 -- 03FFFF
# lo 10010000 220 90 144
# hi 10111111 277 BF 191
#
elif [[ $B4b1 == "F4" ]] ; then
B4b2range="$(echo {128..143})" ## f4 80 80 80 to f4 8f bf bf
# bin oct hex dec 100000 -- 10FFFF
# lo 10000000 200 80 128
# hi 10001111 217 8F 143 -- F4 encodes some values greater than 0x10FFFF;
# such a sequence is invalid.
else
B4b2range="$(echo {128..191})" ## fx 80 80 80 to f3 bf bf bf
# bin oct hex dec 0C0000 -- 0FFFFF
# lo 10000000 200 80 128 0A0000
# hi 10111111 277 BF 191
fi
#
for d2 in $B4b2range ;do
B4b2=$(printf "%0.2X" $d2)
#
for d3 in {128..191} ;do
# bin oct hex dec
# lo 10000000 200 80 128
# hi 10111111 277 BF 191
B4b3=$(printf "%0.2X" $d3)
echo "${B4b1} ${B4b2} ${B4b3} xx"
#
for d4 in {128..191} ;do
# bin oct hex dec
# lo 10000000 200 80 128
# hi 10111111 277 BF 191
B4b4=$(printf "%0.2X" $d4)
#
echo -n "${B4b1}${B4b2}${B4b3}${B4b4}" |
xxd -p -u -r |
iconv -f UTF-8 >/dev/null || {
echo "ERROR: Invalid UTF-8 found: ${B4b1}${B4b2}${B4b3}${B4b4}"; exit 40; }
#
done
done
done
done
echo "# Test 4 bytes for Valid UTF-8 values: END"
echo
fi
########################################################################
# There is no test (yet) for negated range values in the astral plane. #
# (all negated range values must be invalid) #
# I won't bother; This was mainly for me to ge the general feel of #
# the tests, and the final test below should flush anything out.. #
# Traversing the intire UTF-8 range takes quite a while... #
# so no need to do it twice (albeit in a slightly different manner) #
########################################################################
################################
### The construction of: ####
### The Regular Expression ####
### (de-construction?) ####
################################
# BYTE 1 BYTE 2 BYTE 3 BYTE 4
# 1: [\x00-\x7F]
# ===========
# ([\x00-\x7F])
#
# 2: [\xC2-\xDF] [\x80-\xBF]
# =================================
# ([\xC2-\xDF][\x80-\xBF])
#
# 3: [\xE0] [\xA0-\xBF] [\x80-\xBF]
# [\xED] [\x80-\x9F] [\x80-\xBF]
# [\xE1-\xEC\xEE-\xEF] [\x80-\xBF] [\x80-\xBF]
# ==============================================
# ((([\xE0][\xA0-\xBF])|([\xED][\x80-\x9F])|([\xE1-\xEC\xEE-\xEF][\x80-\xBF]))([\x80-\xBF]))
#
# 4 [\xF0] [\x90-\xBF] [\x80-\xBF] [\x80-\xBF]
# [\xF1-\xF3] [\x80-\xBF] [\x80-\xBF] [\x80-\xBF]
# [\xF4] [\x80-\x8F] [\x80-\xBF] [\x80-\xBF]
# ===========================================================
# ((([\xF0][\x90-\xBF])|([\xF1-\xF3][\x80-\xBF])|([\xF4][\x80-\x8F]))([\x80-\xBF]{2}))
#
# The final regex
# ===============
# 1-4: (([\x00-\x7F])|([\xC2-\xDF][\x80-\xBF])|((([\xE0][\xA0-\xBF])|([\xED][\x80-\x9F])|([\xE1-\xEC\xEE-\xEF][\x80-\xBF]))([\x80-\xBF]))|((([\xF0][\x90-\xBF])|([\xF1-\xF3][\x80-\xBF])|([\xF4][\x80-\x8F]))([\x80-\xBF]{2})))
# 4-1: (((([\xF0][\x90-\xBF])|([\xF1-\xF3][\x80-\xBF])|([\xF4][\x80-\x8F]))([\x80-\xBF]{2}))|((([\xE0][\xA0-\xBF])|([\xED][\x80-\x9F])|([\xE1-\xEC\xEE-\xEF][\x80-\xBF]))([\x80-\xBF]))|([\xC2-\xDF][\x80-\xBF])|([\x00-\x7F]))
#######################################################################
# The final Test; for a single character (multi chars to follow) #
# Compare the return code of 'iconv' against the 'regex' #
# for the full range of 0x000000 to 0x10FFFF #
# #
# Note; this script has 3 modes: #
# Run this test TWICE, set each mode Manually! #
# #
# 1. Sequentially test every value from 0x000000 to 0x10FFFF #
# 2. Throw a spanner into the works! Force random byte patterns #
# 2. Throw a spanner into the works! Force random longer strings #
# ============================== #
# #
# Note: The purpose of this routine is to determine if there is any #
# difference how 'iconv' and 'regex' handle the same data #
# #
#######################################################################
if ((Rx==1)) ; then
# real 191m34.826s
# user 158m24.114s
# sys 83m10.676s
time {
invalCt=0
validCt=0
failCt=0
decBeg=$((0x00110000)) # incement by decimal integer
decMax=$((0x7FFFFFFF)) # incement by decimal integer
#
for ((CPDec=decBeg;CPDec<=decMax;CPDec+=13247)) ;do
((D==1)) && echo "=========================================================="
#
# Convert decimal integer '$CPDec' to Hex-digits; 6-long (dec2hex)
hexUTF32BE=$(printf '%0.8X\n' $CPDec) # hexUTF32BE
# progress count
if (((CPDec%$((0x1000)))==0)) ;then
((Test>2)) && echo
echo "$hexUTF32BE Test=$Test mode=${mode[$modebits]} "
fi
if ((Test==1 || Test==2 ))
then # Test 1. Sequentially test every value from 0x000000 to 0x10FFFF
#
if ((Test==2)) ; then
bits=32
UTF8="$( perl -C -e 'print chr 0x'$hexUTF32BE |
perl -l -ne '/^( [\000-\177]
| [\300-\337][\200-\277]
| [\340-\357][\200-\277]{2}
| [\360-\367][\200-\277]{3}
| [\370-\373][\200-\277]{4}
| [\374-\375][\200-\277]{5}
)*$/x and print' |xxd -p )"
UTF8="${UTF8%0a}"
[[ -n "$UTF8" ]] \
&& rcIco32=0 || rcIco32=1
rcIco16=
elif ((modebits==strict && CPDec<=$((0xFFFF)))) ;then
bits=16
UTF8="$( echo -n "${hexUTF32BE:4}" |
xxd -p -u -r |
iconv -f UTF-16BE -t UTF-8 2>/dev/null)" \
&& rcIco16=0 || rcIco16=1
rcIco32=
else
bits=32
UTF8="$( echo -n "$hexUTF32BE" |
xxd -p -u -r |
iconv -f UTF-32BE -t UTF-8 2>/dev/null)" \
&& rcIco32=0 || rcIco32=1
rcIco16=
fi
# echo "1 mode=${mode[$modebits]}-$bits rcIconv: (${rcIco16},${rcIco32}) $hexUTF32BE "
#
#
#
if ((${rcIco16}${rcIco32}!=0)) ;then
# 'iconv -f UTF-16BE' failed produce a reliable UTF-8
if ((bits==16)) ;then
((D==1)) && echo "bits-$bits rcIconv: error $hexUTF32BE .. 'strict' failed, now trying 'lax'"
# iconv failed to create a 'srict' UTF-8 so
# try UTF-32BE to get a 'lax' UTF-8 pattern
UTF8="$( echo -n "$hexUTF32BE" |
xxd -p -u -r |
iconv -f UTF-32BE -t UTF-8 2>/dev/null)" \
&& rcIco32=0 || rcIco32=1
#echo "2 mode=${mode[$modebits]}-$bits rcIconv: (${rcIco16},${rcIco32}) $hexUTF32BE "
if ((rcIco32!=0)) ;then
((D==1)) && echo -n "bits-$bits rcIconv: Cannot gen UTF-8 for: $hexUTF32BE"
rcIco32=1
fi
fi
fi
# echo "3 mode=${mode[$modebits]}-$bits rcIconv: (${rcIco16},${rcIco32}) $hexUTF32BE "
#
#
#
if ((rcIco16==0 || rcIco32==0)) ;then
# 'strict(16)' OR 'lax(32)'... 'iconv' managed to generate a UTF-8 pattern
((D==1)) && echo -n "bits-$bits rcIconv: pattern* $hexUTF32BE"
((D==1)) && if [[ $bits == "16" && $rcIco32 == "0" ]] ;then
echo " .. 'lax' UTF-8 produced a pattern"
else
echo
fi
# regex test
if ((modebits==strict)) ;then
#rxOut="$(echo -n "$UTF8" |perl -l -ne '/^(([\x00-\x7F])|([\xC2-\xDF][\x80-\xBF])|((([\xE0][\xA0-\xBF])|([\xED][\x80-\x9F])|([\xE1-\xEC\xEE-\xEF][\x80-\xBF]))([\x80-\xBF]))|((([\xF0][\x90-\xBF])|([\xF1-\xF3][\x80-\xBF])|([\xF4][\x80-\x8F]))([\x80-\xBF]{2})))*$/ or print' )"
rxOut="$(echo -n "$UTF8" |
perl -l -ne '/^( ([\x00-\x7F]) # 1-byte pattern
|([\xC2-\xDF][\x80-\xBF]) # 2-byte pattern
|((([\xE0][\xA0-\xBF])|([\xED][\x80-\x9F])|([\xE1-\xEC\xEE-\xEF][\x80-\xBF]))([\x80-\xBF])) # 3-byte pattern
|((([\xF0][\x90-\xBF])|([\xF1-\xF3][\x80-\xBF])|([\xF4][\x80-\x8F]))([\x80-\xBF]{2})) # 4-byte pattern
)*$ /x or print' )"
else
if ((Test==2)) ;then
rx="$(echo -n "$UTF8" |perl -l -ne '/^([\000-\177]|[\300-\337][\200-\277]|[\340-\357][\200-\277]{2}|[\360-\367][\200-\277]{3}|[\370-\373][\200-\277]{4}|[\374-\375][\200-\277]{5})*$/ and print')"
[[ "$UTF8" != "$rx" ]] && rxOut="$UTF8" || rxOut=
rx="$(echo -n "$rx" |sed -e "s/\(..\)/\1 /g")"
else
rxOut="$(echo -n "$UTF8" |perl -l -ne '/^([\000-\177]|[\300-\337][\200-\277]|[\340-\357][\200-\277]{2}|[\360-\367][\200-\277]{3}|[\370-\373][\200-\277]{4}|[\374-\375][\200-\277]{5})*$/ or print' )"
fi
fi
if [[ "$rxOut" == "" ]] ;then
((D==1)) && echo " rcRegex: ok"
rcRegex=0
else
((D==1)) && echo -n "bits-$bits rcRegex: error $hexUTF32BE .. 'strict' failed,"
((D==1)) && if [[ "12" == *$Test* ]] ;then
echo # " (codepoint) Test $Test"
else
echo
fi
rcRegex=1
fi
fi
#
elif [[ $Test == 2 ]]
then # Test 2. Throw a randomizing spanner into the works!
# Then test the arbitary bytes ASIS
#
hexLineRand="$(echo -n "$hexUTF32BE" |
sed -re "s/(.)(.)(.)(.)(.)(.)(.)(.)/\1\n\2\n\3\n\4\n\5\n\6\n\7\n\8/" |
sort -R |
tr -d '\n')"
#
elif [[ $Test == 3 ]]
then # Test 3. Test single UTF-16BE bytes in the range 0x00000000 to 0x7FFFFFFF
#
echo "Test 3 is not properly implemented yet.. Exiting"
exit 99
else
echo "ERROR: Invalid mode"
exit
fi
#
#
if ((Test==1 || Test=2)) ;then
if ((modebits==strict && CPDec<=$((0xFFFF)))) ;then
((rcIconv=rcIco16))
else
((rcIconv=rcIco32))
fi
if ((rcRegex!=rcIconv)) ;then
[[ $Test != 1 ]] && echo
if ((rcRegex==1)) ;then
echo "ERROR: 'regex' ok, but NOT 'iconv': ${hexUTF32BE} "
else
echo "ERROR: 'iconv' ok, but NOT 'regex': ${hexUTF32BE} "
fi
((failCt++));
elif ((rcRegex!=0)) ;then
# ((invalCt++)); echo -ne "$hexUTF32BE exit-codes $${rcIco16}${rcIco32}=,$rcRegex\t: $(printf "%0.8X\n" $invalCt)\t$hexLine$(printf "%$(((mode3whi*2)-${#hexLine}))s")\r"
((invalCt++))
else
((validCt++))
fi
if ((Test==1)) ;then
echo -ne "$hexUTF32BE " "mode=${mode[$modebits]} test-return=($rcIconv,$rcRegex) valid,invalid,fail=($(printf "%X" $validCt),$(printf "%X" $invalCt),$(printf "%X" $failCt)) \r"
else
echo -ne "$hexUTF32BE $rx mode=${mode[$modebits]} test-return=($rcIconv,$rcRegex) val,inval,fail=($(printf "%X" $validCt),$(printf "%X" $invalCt),$(printf "%X" $failCt))\r"
fi
fi
done
} # End time
fi
exit
\300\200
(本当に悪い:それはヌルバイトで表現されていないコードポイント0です!)。あなたの正規表現はそれらを正しく拒否すると思います。
uconv
(icu-devtools
Debianのパッケージで)UTF-8データを検査するのに便利だと思います:
$ print '\\xE9 \xe9 \u20ac \ud800\udc00 \U110000' |
uconv --callback escape-c -t us
\xE9 \xE9 \u20ac \xED\xA0\x80\xED\xB0\x80 \xF4\x90\x80\x80
(\x
sは、無効な文字の発見に役立ちます(上記のリテラルで自発的に導入された誤検知を除く\xE9
)。
(他の多くの素晴らしい使用法)。
recode
同様に使用できると思います- 無効なマルチバイトシーケンスを変換するように求められたら失敗するはずだと思うことを除いて。しかし、よくわかりません。それがために失敗することはありませんprint...|recode u8..u8/x4
例えば(ちょうどあなたが上そうであるように、hexdumpに対して処理を行いいる)、それは何もしませんので、しかしiconv data data
、それは失敗しないようにrecode u8..u2..u8/x4
、それはその後、プリントを変換するため。しかし、私は確かにそれについて十分に知りません-そして多くの可能性があります。
test.txt
。ソリューションを使用して無効な文字を見つけるにはどうすればよいですか?何がus
あなたのコードの平均で?
us
は米国を意味し、ASCIIの略です。入力をASCII入力に変換し、非ASCII文字は\uXXXX
表記に変換され、非文字はに変換され\xXX
ます。
Pythonには、バージョン2.0以降の組み込みunicode
関数があります。
#!/usr/bin/env python2
import sys
for line in sys.stdin:
try:
unicode(line, 'utf-8')
except UnicodeDecodeError:
sys.stdout.write(line)
Python 3では、にunicode
組み込まれましたstr
。バイトのようなオブジェクト、ここbuffer
では標準記述子の基礎となるオブジェクトを渡す必要があります。
#!/usr/bin/env python3
import sys
for line in sys.stdin.buffer:
try:
str(line, 'utf-8')
except UnicodeDecodeError:
sys.stdout.buffer.write(line)
python 2
一つはフラグUTF-8でエンコードされたUTF-16サロゲート非文字(少なくとも2.7.6で)に失敗しました。
同様の問題(「コンテキスト」セクションの詳細)に遭遇し、次のftfy_line_by_line.pyソリューションで到着しました。
#!/usr/bin/env python3
import ftfy, sys
with open(sys.argv[1], mode='rt', encoding='utf8', errors='replace') as f:
for line in f:
sys.stdout.buffer.write(ftfy.fix_text(line).encode('utf8', 'replace'))
#print(ftfy.fix_text(line).rstrip().decode(encoding="utf-8", errors="replace"))
encode + replace + ftfyを使用してMojibakeやその他の修正を自動修正します。
次のgen_basic_files_metadata.csv.shスクリプトを使用して、基本的なファイルシステムメタデータの> 10GiB CSVを収集しました。
find "${path}" -type f -exec stat --format="%i,%Y,%s,${hostname},%m,%n" "{}" \;
トラブル私が持っていたのであったファイル名の矛盾エンコーディング引き起こし、ファイルシステム間UnicodeDecodeError
(Pythonアプリケーションでさらに処理するときcsvsqlは、より具体的に)。
そのため、上記のftfyスクリプトを適用しました。
ftfyは非常に遅いことに注意してください。
real 147m35.182s
user 146m14.329s
sys 2m8.713s
一方、比較のためにsha256sum:
real 6m28.897s
user 1m9.273s
sys 0m6.210s
Intel(R)Core(TM)i7-3520M CPU @ 2.90GHz + 16GiB RAM(および外部ドライブ上のデータ)