タグ付けされた質問 「xgboost」

人気のブースティングアルゴリズムとソフトウェアライブラリ(「極端な勾配ブースティング」の略)。ブースティングは、弱予測モデルを強予測モデルに結合します。

4
勾配ブースティング-極端な予測と0.5に近い予測
2つの異なるデータセットで2つの異なるGradient Boosting Classifierモデルをトレーニングするとします。あなたは、one-one-out交差検証を使用し、2つのモデルが出力する予測のヒストグラムをプロットします。ヒストグラムは次のようになります。 この: したがって、1つのケースでは、予測(サンプル外/検証セット)はほとんどが極端(0と1に近い)であり、他のケースでは、予測は0.5に近いです。 それぞれのグラフから何が推測できますか?どのように違いを説明できますか?データセット/機能/モデルについて何か言えることはありますか? 私の直感は、最初のケースでは、機能はデータをよりよく説明するので、モデルはデータによりよく適合します(そして、おそらくデータに適合しますが、必ずしもそうではありませんが、検証/テストセットのパフォーマンスは、機能は実際にデータをよく説明しています)。2番目のケースでは、機能がデータを適切に説明しないため、モデルがデータに近すぎません。ただし、2つのモデルのパフォーマンスは、精度と再現率の点で同じである可能性があります。それは正しいでしょうか?

1
ポアソン偏差(xgboost vs gbm vs回帰)
xgboostツール(極端なグラディエントブースティング)を使用したポアソン回帰の逸脱度式はどれか知りたいのですが。 ソースコードによると、評価関数は次のとおりです。 struct EvalPoissonNegLogLik : public EvalEWiseBase { const char *Name() const override { return "poisson-nloglik"; } inline bst_float EvalRow(bst_float y, bst_float py) const { const bst_float eps = 1e-16f; if (py < eps) py = eps; return common::LogGamma(y + 1.0f) + py - std::log(py) * y; } } したがって、逸脱度(R)は次のようになります。 …
弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.