毎日の時系列分析
私は時系列分析を行おうとしており、この分野は初めてです。2006年から2009年までのイベントを毎日数えており、時系列モデルをそれに合わせたいと考えています。これが私が達成した進歩です。 timeSeriesObj = ts(x,start=c(2006,1,1),frequency=365.25) plot.ts(timeSeriesObj) 結果のプロットは次のとおりです。 データに季節性と傾向があるかどうかを確認するには、この投稿に記載されている手順に従います。 ets(x) fit <- tbats(x) seasonal <- !is.null(fit$seasonal) seasonal そしてロブ・J・ハインドマンのブログで: library(fma) fit1 <- ets(x) fit2 <- ets(x,model="ANN") deviance <- 2*c(logLik(fit1) - logLik(fit2)) df <- attributes(logLik(fit1))$df - attributes(logLik(fit2))$df #P value 1-pchisq(deviance,df) どちらの場合も、季節性がないことを示しています。 シリーズのACFとPACFをプロットすると、次のようになります。 私の質問は: これは、毎日の時系列データを処理する方法ですか?このページは、週ごとと年ごとのパターンを検討する必要があることを示唆していますが、そのアプローチは明確ではありません。 ACFプロットとPACFプロットを取得した後、どのように進めるかわかりません。 auto.arima関数を単純に使用できますか? fit <-arima(myts、order = c(p、d、q) ***** Auto.Arimaの結果を更新****** ここでRob Hyndmanのコメントに従ってデータの頻度を7に変更すると、auto.arimaは季節ARIMAモデルを選択して出力します。 …