コルモゴロフ–スミルノフ検定:サンプルサイズが大きくなると、p値とks検定の統計量は減少します
サンプルサイズの増加に伴い、p値とks検定の統計が減少するのはなぜですか?例としてこのPythonコードを見てみましょう: import numpy as np from scipy.stats import norm, ks_2samp np.random.seed(0) for n in [10, 100, 1000, 10000, 100000, 1000000]: x = norm(0, 4).rvs(n) y = norm(0, 4.1).rvs(n) print ks_2samp(x, y) 結果は次のとおりです。 Ks_2sampResult(statistic=0.30000000000000004, pvalue=0.67507815371659508) Ks_2sampResult(statistic=0.080000000000000071, pvalue=0.89375155241057247) Ks_2sampResult(statistic=0.03499999999999992, pvalue=0.5654378910227662) Ks_2sampResult(statistic=0.026599999999999957, pvalue=0.0016502962880920896) Ks_2sampResult(statistic=0.0081200000000000161, pvalue=0.0027192461984023855) Ks_2sampResult(statistic=0.0065240000000000853, pvalue=6.4573678008760032e-19) 直観的に私は、nが大きくなるにつれて、2つの分布が異なることを「より確実」にテストすることを理解しています。しかし、サンプルサイズが非常に大きい場合、これなどの類似性テストのポイントは何であり、アンダーソンダーリングテストまたはt検定と言えます。このような場合、nが非常に大きい場合、分布は常に「大幅に」違う!?現在、p値のポイントは一体何なのかと思っています。これはサンプルサイズに大きく依存します... p> 0.05でそれを小さくしたい場合は、より多くのデータを取得します。そして、p <0.05でより高くしたい場合は、一部のデータを削除します。 また、2つの分布が同一である場合、ks-test統計は0で、p値は1になります。ただし、私の例では、nが増加するにつれて、ks-test統計は、分布が時間とともにますます類似する(減少する)ことを示唆しています。 、しかしp値に従って、それらは時間とともにより大きくなり、(また減少し)ます。