タグ付けされた質問 「log-loss」

4
優れたログ損失とは何ですか?
私はログ損失とその仕組みをよりよく理解しようとしていますが、見つけることができないように思われることの1つは、ログ損失数を何らかのコンテキストに入れることです。モデルのログ損失が0.5の場合、それは良いですか?良い点と悪い点とは何ですか?これらのしきい値はどのように変化しますか?

1
logloss対gini / auc
2つのモデル(h2o AutoMLを使用するバイナリ分類器)をトレーニングしたので、使用するモデルを1つ選択します。次の結果が得られました。 model_id auc logloss logloss_train logloss_valid gini_train gini_valid DL_grid_1 0.542694 0.287469 0.092717 0.211956 0.872932 0.312975 DL_grid_2 0.543685 0.251431 0.082616 0.186196 0.900955 0.312662 aucそしてlogloss列が交差検定メトリクス(クロスバリデーションのみトレーニングデータを使用する)です。..._trainそして..._validメトリックは、それぞれのモデルを通じてトレーニングと検証のメトリックを実行することによって発見されました。logloss_validまたはを使用しgini_validて、最適なモデルを選択します。 モデル1は優れたジニ(つまりAUC)を持っていますが、モデル2は優れた対数損失を持っています。私の質問は、どちらを選択するべきかという質問です。決定基準としてgini(AUC)またはloglossを使用することの利点/欠点は何ですか。

2
バイナリ分類問題でのaucとloglossの最適化
私は、結果の確率がかなり低い(aroung 3%)バイナリ分類タスクを実行しています。AUCで最適化するか、ログ損失で最適化するかを決定しようとしています。私が理解しているように、AUCはモデルの能力を最大化してクラスを区別しますが、対数損失は実際の確率と推定された確率の相違にペナルティを課します。私の仕事では、精度の精度を校正することが非常に重要です。だから私はログロスを選びますが、最高のログロスモデルは最高のAUC / GINIモデルでもあるべきかどうか疑問に思います。
弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.