負の二項回帰のピアソンの残差が、ポアソン回帰の残差よりも小さいのはなぜですか?
私はこれらのデータを持っています: set.seed(1) predictor <- rnorm(20) set.seed(1) counts <- c(sample(1:1000, 20)) df <- data.frame(counts, predictor) ポアソン回帰を実行しました poisson_counts <- glm(counts ~ predictor, data = df, family = "poisson") そして負の二項回帰: require(MASS) nb_counts <- glm.nb(counts ~ predictor, data = df) 次に、ポアソン回帰の分散統計を計算しました。 sum(residuals(poisson_counts, type="pearson")^2)/df.residual(poisson_counts) # [1] 145.4905 そして負の二項回帰: sum(residuals(nb_counts, type="pearson")^2)/df.residual(nb_counts) # [1] 0.7650289 式を使用せずに、負の二項回帰の分散統計がポアソン回帰の分散統計よりもかなり小さい理由を誰かが説明できますか?