3
情報理論のないカルバック・ライブラーの発散
Cross Validatedを何度も探した後、私はまだ情報理論の領域外でKLの発散を理解することに近づいているとは感じていません。数学のバックグラウンドを持つ人が情報理論の説明をはるかに理解しやすいと感じるのは、かなり奇妙です。 情報理論の背景から私の理解を概説するために:有限数の結果を持つランダム変数がある場合、平均して最短のメッセージで他の誰かと結果を伝えることができる最適なエンコーディングが存在しますビット単位の画像)。結果を伝えるために必要なメッセージの予想される長さは、最適なエンコーディングが使用されている場合、で与えられます。最適以下のエンコーディングを使用する場合、KLダイバージェンスは、平均してメッセージの長さを示します。−∑αpαlog2(pα)−∑αpαlog2(pα) -\sum _{\alpha}p_{\alpha}\log_{2}(p_{\alpha}) この説明は、KL発散の非対称性を非常に直感的に扱っているため、気に入っています。2つの異なるシステム、つまり異なる方法でロードされた2つのロードされたコインがある場合、それらは異なる最適なエンコーディングを持ちます。2番目のシステムのエンコーディングを1番目のシステムに使用することは、1番目のシステムのエンコーディングを2番目に使用することと「同等に悪い」とは思わず感じます。どうやって自分を納得させるかという思考プロセスを経ることなく、私はは、のエンコーディングを使用するときに、この「余分なメッセージの長さ」を与えます。∑αpα(log2qα−log2pα)∑αpα(log2qα−log2pα)\sum _{\alpha}p_{\alpha}( \log _{2}q_{\alpha}-\log_{2}p_{\alpha})qqqppp ただし、ウィキペディアを含むKL発散のほとんどの定義は、2つの離散確率がある場合、(ビットが離散であるため離散用語ではるかにうまく機能する情報理論の解釈と比較できるように、これを離散用語で保持します)分布の場合、KLは「それらの違い」のメトリックを提供します。これらの2つの概念がどのように関連しているのかについての説明はまだありません。私は彼の推論に関する本で覚えているようです、デイブ・マッケイはデータ圧縮と推論が基本的に同じことである点について指摘しており、私の質問はこれに本当に関連していると思います。 それがそうであるかそうでないかにかかわらず、私が念頭に置いているのは、推論の問題に関する質問です。(物事を個別に保つ)、2つの放射性サンプルがあり、そのうちの1つが既知の放射能を持つ特定の物質であることがわかっている場合(これは疑わしい物理学ですが、宇宙がそのように動作するふりをしましょう)、したがって、「真の」分布を知っています測定すべき放射性クリックの既知の持つポアソニアンである必要があります。両方のサンプルの経験的分布を構築し、それらのKL発散を既知の分布と比較し、低い方がその材料である可能性が高いと言いますか?λλ\lambda 疑わしい物理学から離れて、同じ分布から2つのサンプルが取り出されていることを知っているが、それらがランダムに選択されていないことがわかっている場合、KLの発散を既知のグローバル分布と比較すると、サンプルがどのようにバイアスされているかの感覚が得られますとにかく他と比較して? 最後に、前の質問に対する答えが「はい」の場合、なぜですか?これらのことを、情報理論への(おそらくは希薄な)つながりを作らずに、統計的な観点だけから理解することは可能ですか?