タグ付けされた質問 「cholesky」

5
相関データシミュレーションにコレスキー分解または代替を使用する方法
コレスキー分解を使用して、相関行列が与えられた相関ランダム変数をシミュレートします。事は、結果は与えられた相関構造を決して再現しないということです。以下に、状況を説明するためのPythonの小さな例を示します。 import numpy as np n_obs = 10000 means = [1, 2, 3] sds = [1, 2, 3] # standard deviations # generating random independent variables observations = np.vstack([np.random.normal(loc=mean, scale=sd, size=n_obs) for mean, sd in zip(means, sds)]) # observations, a row per variable cor_matrix = np.array([[1.0, 0.6, 0.9], [0.6, 1.0, …

3
多変量正規分布からサンプルを描画するためのコレスキー対固有分解
サンプルを描きたいです。ウィキペディアは、コレスキーまたは固有分解を使用することを推奨しています。つまり、 または Σ = D 1 D T 1x∼N(0,Σ)x∼N(0,Σ)\mathbf{x} \sim N\left(\mathbf{0}, \mathbf{\Sigma} \right)Σ=D1DT1Σ=D1D1T \mathbf{\Sigma} = \mathbf{D}_1\mathbf{D}_1^T Σ=QΛQTΣ=QΛQT \mathbf{\Sigma} = \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^T したがって、サンプルは次の方法で描画できます。 または ここで、 x=D1vx=D1v \mathbf{x} = \mathbf{D}_1 \mathbf{v} x=QΛ−−√vx=QΛv \mathbf{x} = \mathbf{Q}\sqrt{\mathbf{\Lambda}} \mathbf{v} v∼N(0、I)v∼N(0,I) \mathbf{v} \sim N\left(\mathbf{0}, \mathbf{I} \right) ウィキペディアでは、どちらもサンプルの生成に同等に適していると示唆していますが、コレスキー法の方が計算時間が高速です。これは本当ですか?特に数値的に、モンテカルロ法を使用する場合、対角線に沿った分散が数桁異なる場合がありますか?この問題に関する正式な分析はありますか?


1
「固有」が行列の反転にどのように役立つかを説明する
私の質問は、geoR:::.negloglik.GRFまたはで悪用された計算技術に関するものgeoR:::solve.geoRです。 線形混合モデルのセットアップ: ここで、とはそれぞれ固定効果とランダム効果です。また、β B Σ = COV (Y )Y=Xβ+Zb+eY=バツβ+Zb+e Y=X\beta+Zb+e ββ\betabbbΣ=cov(Y)Σ=cov(Y)\Sigma=\text{cov}(Y) 影響を推定する場合、計算する必要がある 通常のようなものを使用して行うことができ、時にははほとんど可逆的ではないので、トリックを使用してください(X ' Σ - 1 X )(X′Σ−1X)−1X′Σ−1Y(X′Σ−1X)−1X′Σ−1Y (X'\Sigma^{-1}X)^{-1}X'\Sigma^{-1} Y solve(XtS_invX,XtS_invY)(X′Σ−1X)(X′Σ−1X)(X'\Sigma^{-1}X)geoR t.ei=eigen(XtS_invX) crossprod(t(t.ei$vec)/sqrt(t.ei$val))%*%XtS_invY (に見られるgeoR:::.negloglik.GRFとgeoR:::.solve.geoR)分解に達した したがって (X′Σ−1X)=ΛDΛ−1(X′Σ−1X)=ΛDΛ−1 (X'\Sigma^{-1}X)=\Lambda D \Lambda^{-1}\\ Λ′=Λ−1Λ′=Λ−1\Lambda'=\Lambda^{-1}(X′Σ−1X)−1=(D−1/2Λ−1)′(D−1/2Λ−1)(X′Σ−1X)−1=(D−1/2Λ−1)′(D−1/2Λ−1) (X'\Sigma^{-1}X)^{-1}=(D^{-1/2}\Lambda^{-1})'(D^{-1/2}\Lambda^{-1}) 2つの質問: この固有分解は反転にどのように役立ちますか?(X′Σ−1X)(X′Σ−1X)(X'\Sigma^{-1}X) 他の実行可能な代替手段(堅牢で安定したもの)はありますか?(例:qr.solveまたはchol2inv)
弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.