膨大な数の機能(> 10K)に最適なPCAアルゴリズム?
以前にStackOverflowでこれを尋ねましたが、SOで何の回答も得られなかったことを考えると、ここでの方が適切かもしれません。統計とプログラミングの交差点にあります。 PCA(主成分分析)を行うためのコードを書く必要があります。私はよく知られたアルゴリズムを閲覧し、これを実装しました。これは、私が知る限り、NIPALSアルゴリズムと同等です。最初の2〜3個の主成分を見つけるのに適していますが、収束が非常に遅くなるようです(数百から数千回の繰り返し)。必要なものの詳細は次のとおりです。 アルゴリズムは、膨大な数の機能(10,000〜20,000のオーダー)と数百のオーダーのサンプルサイズを扱う場合に効率的でなければなりません。 ターゲット言語はDであるため、まともな線形代数/マトリックスライブラリがなくても合理的に実装可能でなければなりません。Dはまだ1つもありません。 。 補足として、同じデータセットでRはすべての主成分を非常に高速に見つけるように見えますが、特異値分解を使用します。これは自分でコーディングしたいものではありません。