ブートストラップCI(およびバーティキュラーのBCa)が通常の分散データに対してどのように機能するのか疑問に思っていました。さまざまなタイプのディストリビューションでのパフォーマンスを調査する多くの作業があるようですが、通常の分布データでは何も見つかりませんでした。最初に勉強するのは明らかなことのように思えるので、私は論文が古すぎると思います。
Rブートパッケージを使用していくつかのモンテカルロシミュレーションを行ったところ、ブートストラップCIは正確なCIと一致していることがわかりましたが、小さなサンプル(N <20)の場合、少し寛大な(小さなCI)傾向があります。サンプルが十分に大きい場合、それらは本質的に同じです。
これは、ブートストラップを常に使用しない理由があるのではないかと思います。分布が正常であるかどうかの評価の難しさ、およびこの背後にある多くの落とし穴を考えると、分布に関係なくブートストラップCIを決定および報告しないことは理にかなっています。ノンパラメトリックテストは電力が少ないため、体系的に使用しないことの動機を理解していますが、シミュレーションではブートストラップCIの場合はそうではないことがわかります。彼らはさらに小さいです。
私を悩ませる同様の質問は、なぜ中心傾向の尺度として中央値を常に使用しないのかということです。多くの場合、非正規分布データの特性評価に使用することをお勧めしますが、中央値は正規分布データの平均と同じなので、なぜ区別するのですか?分布が正規であるかどうかを決定する手順を取り除くことができれば、非常に有益と思われます。
これらの問題についてのあなたの考えと、それらが以前に議論されたかどうかについて、私は非常に興味があります。参考文献をいただければ幸いです。
ありがとう!
ピエール