線形混合モデルのランダム効果に関するモデル選択に関するさまざまな説明は、REMLの使用を指示しています。あるレベルでREMLとMLの違いは知っていますが、MLにバイアスがかかっているため、なぜREMLを使用する必要があるのかわかりません。たとえば、MLを使用して正規分布モデルの分散パラメーターでLRTを実行するのは間違っていますか(以下のコードを参照)。モデルの選択において、MLであるよりも偏らないことが重要である理由がわかりません。最終的な答えは「モデル選択がMLよりもREMLの方がうまく機能するため」でなければならないと思いますが、それ以上のことを知りたいと思います。LRTとAICの派生物は読みませんでした(それらを完全に理解するのに十分ではありません)が、派生物でREMLが明示的に使用されている場合は、実際に十分であることを知っているだけです(たとえば、
n <- 100
a <- 10
b <- 1
alpha <- 5
beta <- 1
x <- runif(n,0,10)
y <- rnorm(n,a+b*x,alpha+beta*x)
loglik1 <- function(p,x,y){
a <- p[1]
b <- p[2]
alpha <- p[3]
-sum(dnorm(y,a+b*x,alpha,log=T))
}
loglik2 <- function(p,x,y){
a <- p[1]
b <- p[2]
alpha <- p[3]
beta <- p[4]
-sum(dnorm(y,a+b*x,alpha+beta*x,log=T))
}
m1 <- optim(c(a,b,alpha),loglik1,x=x,y=y)$value
m2 <- optim(c(a,b,alpha,beta),loglik2,x=x,y=y)$value
D <- 2*(m1-m2)
1-pchisq(D,df=1) # p-value