コンテンツベースの画像検索システムを作成するデータマイニングの割り当てがあります。5匹の動物の画像が20枚あります。つまり、合計100枚の画像になります。
私のシステムは、最も関連性の高い10個の画像を入力画像に返します。次に、Precision-Recall曲線を使用してシステムのパフォーマンスを評価する必要があります。しかし、私はプレシジョンリコール曲線の概念を理解していません。私のシステムがゴリラ画像に対して10個の画像を返すとしましょう。ただし、ゴリラは4つだけです。返される他の6つの画像は他の動物のものです。したがって、
- 精度は
4/10 = 0.4
(関連性が返される)/(すべて返される) - 再現率は
4/20 = 0.2
(関連性が返される)/(すべての関連)
つまり<0.2,0.4>
、カーブではなくポイントしかありません。曲線(つまり、ポイントのセット)はどのように作成しますか?返される画像の数を変更する必要がありますか(これは私の場合10に固定されています)?