私は、患者の年齢(年で測定された整数量)が予測変数の1つである予測コストモデルに取り組んでいます。年齢と入院のリスクの間の強い非線形関係は明らかです:
患者の年齢に応じて、ペナルティ付き回帰平滑化スプラインを検討しています。よると、統計的学習の要素(Hastieら、2009、P.151)、最適な結び目の配置は、会員の年齢のユニークな値ごとに結び目があります。
年齢を整数として保持しているとすると、ペナルティ付きスムージングスプラインは、データセットで見つかった年齢の値ごとに1つ(マイナス1つ)の、101の異なる年齢インジケーター変数でリッジ回帰または投げ縄を実行することに相当しますか?各年齢インジケーターの係数がゼロに向かって縮小されるため、過剰パラメーター化は回避されます。