ここにいくつかのコンテキストがあります。2つの環境変数(温度、栄養素レベル)が11年間の応答変数の平均値にどのように影響するかを調べることに興味があります。毎年、10万を超える場所からのデータがあります。
目標は、11年間で、応答変数の平均値が環境変数の変化に応答したかどうかを判断することです(たとえば、気温が上がる+栄養素が増える=応答が大きくなる)。
残念なことに、応答は平均値であるため(平均値を見ずに、定期的な経年変動だけで信号が圧倒される)、回帰は2つの説明変数を持つ11データポイント(1年に1平均値)になります。私にとって、線形の正の回帰でさえ、データセットが非常に小さいことを考えると、意味があると考えるのは難しいでしょう(関係が非常に強い場合を除き、名目上の40ポイント/変数さえ満たしません)。
私はこの仮定をする権利がありますか?誰かが私が見逃しているかもしれない他の考え/視点を提供できますか?
PS:いくつかの警告:追加の年を待たずに、より多くのデータを取得する方法はありません。したがって、利用可能なデータは、私たちが本当に取り組まなければならないものです。