先日、A / Bテスト会社によるウェビナーで、居住者の「データサイエンティスト」に、実験を再実行して結果を検証する必要があることを説明してもらいました。前提として、95%の信頼度を選択した場合、誤検知の可能性は5%(1/20)です。同じ制約で実験を再実行すると、1/400になります(これは0.05 ^ 2 = 1/400と決定したと仮定しています)
これは有効な発言ですか?(つまり、「2回実行すると、2つの統計的有意性の勝利=偽陽性の1/400の確率」)?それはあなたの有意水準を上げるためのより良いアプローチだったでしょうか?
ビジネスの観点から、私が懸念しているのは、実験を再実行することです。つまり、より多くのユーザーを劣ったページ(処理)にさらし、潜在的な売り上げを失うことになります。