MASSパッケージのR
を使用してrlm()
、MMの重みでロバストな線形モデルを推定しました。`R``はモデルの値を提供しませんが、意味のある量であればR 2が欲しいです。また、ロバスト回帰で観測値に重みが付けられたのと同じ方法で、合計分散と残差を重み付けするR 2値を持つことに意味があるかどうかを知りたいと思っています。私の一般的な考え方は、回帰の目的で、何らかの方法で外れ値であるため、いくつかの推定値の影響が少ない重みを本質的に使用している場合、r 2を計算するためにそれらを与える必要があるかもしれないということです同じ見積もりは影響が少ない?
と重み付きR 2の2つの簡単な関数を書きました。それらは以下にあります。また、HI9と呼ばれる私のモデルに対してこれらの関数を実行した結果も含めました。編集:私は式を与えるUNSWのアデルコスターのウェブページが見つかりそれは両方の計算の計算に重みベクトルを含んでいると、私がやったように、そしてより正式な参照のために彼女に尋ねた:のhttp://web.maths。 unsw.edu.au/~adelle/Garvan/Assays/GoodnessOfFit.html(この重み付けされたr 2の解釈方法については、Cross Validatedからのヘルプを引き続き探しています。)R2
SSe
SSt
#I used this function to calculate a basic r-squared from the robust linear model
r2 <- function(x){
+ SSe <- sum((x$resid)^2);
+ observed <- x$resid+x$fitted;
+ SSt <- sum((observed-mean(observed))^2);
+ value <- 1-SSe/SSt;
+ return(value);
+ }
r2(HI9)
[1] 0.2061147
#I used this function to calculate a weighted r-squared from the robust linear model
> r2ww <- function(x){
+ SSe <- sum((x$w*x$resid)^2); #the residual sum of squares is weighted
+ observed <- x$resid+x$fitted;
+ SSt <- sum((x$w*(observed-mean(observed)))^2); #the total sum of squares is weighted
+ value <- 1-SSe/SSt;
+ return(value);
+ }
> r2ww(HI9)
[1] 0.7716264
これに答えるために時間を費やしてくれたすべての人に感謝します。これについての非常に良い参考資料がすでにあるか、または上記のコードが読みづらい場合(私はコード担当者ではありません)、謝罪を受け入れてください。