医学生の態度構成を測定することを目的とする20項目のアンケートに400の回答があります。機器は米国で医学生の1年間検証され、公開されたデータは非常に「クリーン」です。すべてのritc値> 0.3、アルファ0.84、安定した4因子構造のPCAなど。私のサンプルでは、 ritc <0.2を持つ20のアイテムと文化的サブポピュレーション(n = 70)では、これらのritc値はゼロ/負です。すべてのitmesを保持している場合、ritcが低いものは、どの要素にもロードされないか、2項目の要素(要素4)に分類されません。これは(調査したいと思います)これは次のいずれかが原因であると仮定します。または(ii)プログラムのすべての段階で生徒からの回答があり、スケールアイテムで十分にキャプチャされていない構成に発達面があるため。これを調査できる統計検定はありますか?
ritcのあるアイテムをスケールから削除する必要がありますか。削除する場合は、最低から順に削除します。どの時点でアイテムの削除を停止する必要がありますか/アンケートから何かを紛失しましたか?メジャーとマイナーのサブポピュレーションの間でスケールの因子構造を比較したい場合、これをどのように試行するか、またはマイナーサブサンプルが小さすぎて結論を導き出せないのですか?参考文献をいただければ幸いです。
最後に、スケールを検証する目的は、介入前および介入後のスコアを使用して介入の有効性を判断するためにスケールを使用することです。アイテムのritcが低い場合、実験的な設定でスケールの信頼性に影響を与える可能性があると思います。または私は間違っていますか?発達的側面を持つ構成要素を測定するために設計されたスケールの有用性を決定する統計的方法はありますか?つまり、学生が態度構成要素の「より多く」を開発するときにすべての項目が適切に機能しますか?