XとYの共同分布からのサンプルがあるとします。XとYは独立しているという仮説をどのように検証しますか?
とYの結合または周辺分布の法則については仮定されていません(すべての結合の正規性の中で、独立性は相関が0であるため同一です)
とYの間の可能な関係の性質については想定されていません。非線形である可能性があるため、変数は無相関()ですが、高度に共依存()です。
私は2つのアプローチを見ることができます:
両方の変数をビンし、フィッシャーの正確検定またはG 検定を使用します。
- プロ:定評のある統計検定を使用する
- 短所:ビニングに依存
推定依存性のと:(これはの独立のためにととそれらは互いに完全に決定)。
- プロ:明確な理論的意味を持つ数字を生成します
- Con:おおよそのエントロピー計算に依存します(つまり、再びビニングします)
これらのアプローチは理にかなっていますか?
人々が使用する他の方法は何ですか?