Glen_bに同意します。回帰問題では、主な焦点はパラメーターにあり、独立変数または予測子xではありません。そして、単純な変換を使用して問題を線形化するか、そのまま続行するかを決定できます。
線形の問題は:あなたの問題ではパラメータの数をカウントし、それらのすべてが例えば、電源1を持っているかどうかをチェックし。この関数はxで非線形です。ただし、回帰問題の場合、xの非線形性は問題になりません。パラメータが線形か線形かを確認する必要があります。この場合、a、b、cy=ax+bx2+cx3+dx2/3+e/x+fx−4/7xxabc、.. fすべてパワー1です。したがって、それらは線形です。
y=exp(ax)exp(ax)=1+ax/1!+(ax)2/2!+…
y=a/(1+bexp(cx)abcbc(a/y)−1=Y and then invoking a logarithmic function on both the sides to linearise.
Now suppose y=a1/(1+b1exp(c1x))+a2/(1+b2exp(c2x)). This is once again nonlinear with respect to the parameters. But, it cannot be linearised. One needs to use a nonlinear regression.
In principle, using a linear strategy to solve a nonlinear regression problem is not a good idea. So, tackle linear problems (when all the parameters have power 1) using linear regression and adopt nonlinear regression if your parameters are nonlinear.
In your case, substitute the weighting function back in the main function. The parameter β0 would be the only parameter with power 1. All the other parameters are nonlinear (β1 eventually multiplies with θ1 and θ2 (these two are nonlinear parameters) making it also nonlinear. Therefore, it is a nonlinear regression problem.
Adopt a nonlinear least squares technique to solve it. Choose initial values cleverly and use a multistart approach to find the global minima.
This vide will be helpful (though it does not talk about global solution): http://www.youtube.com/watch?v=3Fd4ukzkxps
Using GRG nonlinear solver in the Excel spreadsheet (install the solver toolpack by going to options - Add-Ins - Excel Add-Ins and then choosing Solver Add-In)and invoking the multistart in the options list by prescribing intervals to the parameters and demanding the constraint precision and the convergence to be small, a global solution can be obtained.
If you are using Matlab, use the global optimisation toolbox. It has multistart and globalsearch options. Certain codes are available here for a global solution, here
and
here.
If you are using Mathematica, look here.
If you are using R, try here.